К основным свойствам модели не относятся. Основные свойства модели и моделирования

    Конечность : модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

    Упрощенность : модель отображает только существенные стороны объекта;

    Приблизительность : действительность отображается моделью грубо или приблизительно;

    Адекватность : насколько успешно модель описывает моделируемую систему;

    Информативность : модель должна содержать достаточную информацию о системе - в рамках гипотез, принятых при построении модел;

    Потенциальность : предсказуемость модели и её свойств;

    Сложность : удобство её использования;

    Полнота : учтены все необходимые свойства;

    Адаптивность .

Одни и те же устройства, процессы, явления и т. д. (далее - «системы») могут иметь много разных видов моделей. Как следствие, существует много названий моделей, большинство из которых отражает решение некоторой конкретной задачи.

Требования к моделям. Моделирование всегда предполагает принятие допущений той или иной степени важности. При этом должны удовлетворяться следующие требования к моделям:

    адекватность , то есть соответствие модели исходной реальной системе и учет, прежде всего, наиболее важных качеств, связей и характеристик. Оценить адекватность выбранной модели, особенно, например, на начальной стадиипроектирования, когда вид создаваемой системы ещё неизвестен, очень сложно. В такой ситуации часто полагаются на опыт предшествующих разработок или применяют определенные методы, например,метод последовательных приближений;

    точность , то есть степень совпадения полученных в процессе моделирования результатов с заранее установленными, желаемыми. Здесь важной задачей является оценка потребной точности результатов и имеющейся точности исходных данных, согласование их как между собой, так и с точностью используемой модели;

    универсальность , то есть применимость модели к анализу ряда однотипных систем в одном или нескольких режимах функционирования. Это позволяет расширить область применимости модели для решения бо́льшего круга задач;

    целесообразная экономичность , то есть точность получаемых результатов и общность решения задачи должны увязываться с затратами на моделирование. И удачный выбор модели, как показывает практика, - результат компромисса между отпущенными ресурсами и особенностями используемой модели;

Выбормодели и обеспечение точности моделирования считается одной из самых важных задач моделирования.

Основные этапы моделирования. Моделирование – процесс создания и использования модели. Моделирование является обязательной частью исследований и разработок, неотъемлемой частью нашей жизни, поскольку сложность любого материального объекта и окружающего его мира бесконечна вследствие неисчерпаемости материи и форм её взаимодействия внутри себя и с внешней средой.

Цели моделирования

    Познание действительности

    Проведение экспериментов

    Проектирование и управление

    Прогнозирование поведения объектов

    Тренировка и обучения специалистов

    Обработка информации

Все этапы моделирования определяются поставленной задачей и целями моделирования. В общем случае процесс построения и исследования модели можно представить следующей схемой:

Первый этап - постановка задачи включает в себя стадии:описание задачи, определение цели моделирования, анализ объекта.

    Описание задачи. Задача формулируется на обычном языке. По характеру постановки все задачи можно разделить на две основные группы. К первой группе можно отнести задачи, в которых требуется исследовать, как изменятся характеристики объекта при некотором воздействии на него, «что будет, если? ...». В задачах, относящихся ко второй группе, требуется определить, какое надо произвести воздействие на объект, чтобы его параметры удовлетворяли некоторому заданному условию, «как сделать, чтобы? ..».

    Определение цели моделирования. На этой стадии необходимо среди многих характеристик (параметров) объекта выделить существенные . Для одного и того же объекта при разных целях моделирования существенными будут считаться разные свойства. Определение цели моделирования позволяет четко установить, какие данные являются исходными, что требуется получить на выходе и какими свойствами объекта можно пренебречь. Строитсясловесная модель задачи.

    Анализ объекта подразумевает четкое выделение моделируемого объекта и его основных свойств.

Второй этап - формализация задачи связан с созданиемформализованной модели , то есть модели, записанной на каком-либо формальном языке. Например, данные переписи населения, представленные в виде таблицы или диаграммы - это формализованная модель.

В общем смысле формализация - это приведение существенных свойств и признаков объекта моделирования к выбранной форме. Формальная модель - это модель, полученная в результате формализации.

Третий этап - разработка модели начинается с выбора инструмента моделирования, другими словами, программной среды, в которой будет создаваться и исследоваться модель. От этого выбора зависиталгоритм построения модели, а также форма его представления. В среде программирования этопрограмма , написанная на соответствующем языке. В прикладных средах (электронные таблицы, СУБД, графических редакторах и т. д.) этопоследовательность технологических приемов , приводящих к решению задачи. Одну и ту же задачу можно решить, используя различные среды. Выбор инструмента моделирования зависит, в первую очередь, от реальных возможностей, как технических, так и материальных.

Четвертый этап - эксперимент включает две стадии: тестирование модели и проведение исследования.

    Тестирование модели - процесс проверки правильности построения модели. На этой стадии проверяется разработанный алгоритм построения модели иадекватностьполученной модели объекту и цели моделирования. Для проверки правильности алгоритма построения модели используется тестовые данные, для которых конечный результат заранее известен (обычно его определяют ручным способом). Если результаты совпадают, то алгоритм разработан верно, если нет - надо искать и устранять причину несоответствия. Тестирование должно быть целенаправленным и систематизированным, а усложнение тестовых данных должно происходить постепенно. Чтобы убедиться, что построенная модель правильно отражает существенные для цели моделирования свойства оригинала, то есть является адекватной, необходимо подбирать тестовые данные, которые отражают реальную ситуацию.

    Исследование модели. К этой стадии можно переходить только после того, как тестирование модели прошло успешно, и вы уверены, что создана именно та модель, которую необходимо исследовать.

Пятый этап - анализ результатов является ключевым для процесса моделирования. Именно по итогам этого этапа принимается решение: продолжать исследование или закончить. Если результаты не соответствуют целям поставленной задачи, значит, на предыдущих этапах были допущены ошибки. В этом случае необходимокорректировать модель , то есть возвращаться к одному из предыдущих этапов. Процесс повторяется до тех пор, пока результаты эксперимента не будут отвечать целям моделирования.

Информационная модель объекта -модельобъекта, представленная в видеинформации, описывающей существенные для данного рассмотренияпараметрыипеременные величиныобъекта, связи между ними, входы и выходы объекта и позволяющая путём подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.Информационные модели нельзя потрогать или увидеть, они не имеют материального воплощения, потому что строятся только на информации. Информационная модель - совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешниммиром.

Виды информационных моделей:

1. Описательные информационные модели - это модели, созданные на естественном языке (т.е. на любом языке общения между людьми: английском, русском, китайском, мальтийском и т.п.) в устной или письменной форме.

2. Формальные информационные модели - это модели, созданные на формальном языке (т.е. научном, профессиональном или специализированном). Примеры формальных моделей: все виды формул, таблицы, графы, карты, схемы и т.д.

3. Хроматические (информационные) модели - это модели, созданные на естественном языке семантики цветовых концептов и их онтологических предикатов (т.е. на языке смыслов и значений цветовых канонов, репрезентативно воспроизводившихся в мировой культуре). Примеры хроматических моделей: "атомарная" модель интеллекта (АМИ), межконфессиональная имманентность религий (МИР), модель аксиолого-социальной семантики (МАСС) и др., созданные не базе теории и методологии хроматизма.

Рассмотрим подробнее класс информационных моделей с позиции способов представления информации . Форма представления информационной модели зависит от способа кодирования (алфавита) и материального носителя.

Воображаемое (мысленное или интуитивное) моделирование - это мысленное представление об объекте. Такие модели формируются в воображении человека и сопутствуют его сознательной деятельности. Они всегда предшествуют созданию материального объекта, материальной и информационной модели, являясь одним из этапов творческого процесса. Например, музыкальная тема в мозгу композитора - интуитивная модель музыкального произведения.

Вербальное моделирование (относится к знаковым) - это представление информационной модели средствами естественного разговорного языка (фонемами). Мысленная модель, выраженная в разговорной форме, называется вербальной (от латинского слова verbalize - устный). Форма представления такой модели - устное или письменное сообщение. Примерами являются литературные произведения, информация в учебных пособиях и словарях, инструкции пользования устройством, правила дорожного движения.Наглядное (выражено на языке представления) моделирование - это выражение свойств оригинала с помощью образов. Например, рисунки, художественные полотна, фотографии, кинофильмы. При научном моделировании понятия часто кодируются рисунками -иконическое моделирование. Сюда же относятсягеометрические модели - информационные модели, представленные средствами графики.

Образно-знаковое моделирование использует знаковые образы какого-либо вида: схемы, графы, чертежи, графики, планы, карты. К этой группе относятся структурные информационные модели, создаваемые для наглядного изображения составных частей и связей объектов. Наиболее простые и распространенные информационные структуры - это таблицы, схемы, графы, блок-схемы, деревья.

Знаковое (символическое выражено на языке описания) моделирование использует алфавиты формальных языков: условные знаки, специальные символы, буквы, цифры и предусматривает совокупность правил оперирования с этими знаками. Примеры: специальные языковые системы, физические или химические формулы, математические выражения и формулы, нотная запись и т. д. Программа, записанная по правилам языка программирования, является знаковой моделью.

Одним из наиболее распространенных формальных языков является алгебраический язык формул в математике , который позволяет описывать функциональные зависимости между величинами. Составление математической модели во многих задачах моделирования хоть и промежуточная, но очень существенная стадия. В тех случаях, когда моделирование ориентировано на исследование моделей с помощью компьютера, одним из его этапов является разработкакомпьютерной модели .Компьютерная модель - это созданный за счет ресурсов компьютера виртуальный образ, качественно и количественно отражающий внутренние свойства и связи моделируемого объекта, иногда передающий и его внешние характеристики. Компьютерная модель представляет собой материальную модель, воспроизводящую внешний вид, строение или действие моделируемого объекта посредством электромагнитных сигналов. Разработке компьютерной модели предшествуют мысленные, вербальные, структурные, математические и алгоритмические модели.

Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом, динамическом, детерминированном и др.

Как правило, модель включает в себя: объект О , субъект А (не обязательно) , задачу Z , ресурсы B , среду моделирования С .

Модель можно представить формально в виде: М = < O, А, Z, B, C >.

Основные свойства любой модели :

  • целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель такого отображения;
  • конечность - модель отображает оригинал лишь в конечном числе его отношений и ресурсы моделирования конечны;
  • упрощенность - модель отображает только существенные стороны объекта и она должна быть проста для исследования или воспроизведения;
  • наглядность, обозримость основных ее свойств и отношений;
  • доступность и технологичность для исследования или воспроизведения;
  • информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получать новую информацию;
  • полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
  • управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях.

Жизненный цикл моделируемой системы:

  • сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;
  • проектирование структуры и состава моделей (подмоделей);
  • построение спецификаций модели, разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей;
  • исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования;
  • исследование адекватности, устойчивости, чувствительности модели;
  • оценка средств моделирования (затраченных ресурсов);
  • интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;
  • генерация отчетов и проектных (народно-хозяйственных) решений;
  • уточнение, модификация модели, если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования.

Моделирование – есть метод системного анализа.

Часто в системном анализе при модельном подходе исследования может совершаться одна методическая ошибка, а именно, - построение корректных и адекватных моделей (подмоделей) подсистем системы и их логически корректная увязка не дает гарантий корректности построенной таким способом модели всей системы.

Модель, построенная без учета связей системы со средой, может служить подтверждением теоремы Геделя, а точнее, ее следствия, утверждающего, что в сложной изолированной системе могут существовать истины и выводы, корректные в этой системе и некорректные вне ее.

Наука моделирования состоит в разделении процесса моделирования (системы, модели) на этапы (подсистемы, подмодели), детальном изучении каждого этапа, взаимоотношений, связей, отношений между ними и затем эффективного описания их с максимально возможной степенью формализации и адекватности.

В случае нарушения этих правил получаем не модель системы, а модель "собственных и неполных знаний".

Моделирование рассматривается, как особая форма эксперимента, эксперимента не над самим оригиналом, т.е. простым или обычным экспериментом, а над копией оригинала. Здесь важен изоморфизм систем оригинальной и модельной.

Изоморфизм - равенство, одинаковость, подобие.

Конец работы -

Эта тема принадлежит разделу:

Общая характеристика процессов сбора, передачи и обработки информации

На сайте сайт читайте: общая характеристика процессов сбора, передачи и обработки информации.. 15. о в прохорова..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Информация, ее представление и измерение
Информатика – это наука об информационных процессах, о моделях, об алгоритмах и алгоритмизации, о программах и программировании, об исполнителях алгоритмов и различных исполняющих с

Системы счисления и действия в них
Общая характеристика процессов сбора, передачи, обработки и накопления информации базируется на использовании кодирования информации средствами ее представления в виде чисел определенных систем счи

Общая характеристика процессов передачи информации
Пространство сообщений. Коды обнаружения и исправления ошибок Введем пространство сообщений в виде E(n, Um), где Um - алфавит, m - ра

Кодирование и шифрование информации
Возникновение индустрии обработки информации привело к возникновению индустрии средств ее защиты и к актуализации самой проблемы защиты информации, проблемы информационной безопасности. Од

При кодировании нет такого секретного ключа, так как кодирование ставит целью лишь более сжатое, компактное представление сообщения
Если k – ключ, то можно записать f(k(A)) = B. Для каждого ключа k, преобразование f(k) должно быть обратимым, то есть f(k(B)) = A. Совокупность преобразования f(k) и соответствия множества k называ

Компьютерные вирусы
Компьютерный вирус – специальная программа, которая составлена кем-то со злым умыслом или для демонстрации честолюбивых, в плохом смысле, интересов, способная к воспроизводству

Модели и моделирование
Модель - это объект или описание объекта, системы для замещения одной системы (оригинала) другой системой для лучшего изучения оригинала или воспроизведения каких-либо его свойств.

Компьютерное моделирование
Компьютерное моделирование от постановки задачи до получения результатов проходит следующие этапы: 1. Постановка задачи: · формулировка задачи; · о

Функции алгебры логики
Рассмотриммножество векторов X = {}. Будем предполагать, что координаты этих векторов могут принимать значения 0 или 1. Таким образом множество X состоит из 2

Дистрибутивность
x1 & (x2 v x3) = (x1 & x2) v (x1 & x3). x1 v (x2 & x

Идемпотентность
A v A = A & A = A. 6.Булева алгебра содержит элементы 0,1 , такие что для всякого элемента A Î SB справедливо

Минимизация функций алгебры логики
Введем понятие конечного автомата, как некоторой абстрактной системы, характеризующейся конечным числом состояний. Работа такого автомата напрямую связана с реализацией соответствующей ему логическ

Программные средства реализации информационных процессов
Представление вычислительного устройства схемой, состоящей из логических элементов наиболее исследованный вид структурной реализации вычислительных и информационных процессов. Другой вид - реализац

Технические средства реализации информационных процессов
Компьютер есть сложное техническое устройство, состоящее из простых элементов. Любой электронный логический блок компьютера состоит из вентилей (логических устройств, базовых логических с

Алгоритмизация и программирование
"Алгоритм" является базовым основополагающим понятием информатики, а алгоритмизация (программирование) – основным разделом курса информатики. Соврем


- целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;
- конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
- упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
приблизительность - действительность отображается моделью грубо или приблизительно;
- адекватность - модель должна успешно описывать моделируемую систему;
- наглядность, обозримость основных ее свойств и отношений;
- доступность и технологичность для исследования или воспроизведения;
- информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и должна давать возможность получить новую информацию;
сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
- полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
- устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;
- целостность - модель реализует некоторую систему (т.е. целое);
- замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;
- адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;
- управляемость (имитационность) - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;
- эволюционируемость – возможность развития моделей (предыдущего уровня).

  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность...


  • Основные свойства моделей . - целенаправленность - модель


  • Основные свойства моделей . - целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель; - конечность - м.


  • Основные свойства средней арифметической. Для снижения трудоемкости расчетов используются основные свойства ср.арифм-кой


  • Основные свойства живых организмов. А) Единство химического состава.
    Оно связано с приобретением организмами новых признаков и свойств .


  • Два свойства общ. благ: 1)неконкурентность, т.е. увеличение числа потребителей блага не влечет за собой снижение полезности, доставляемой каждому из них.


  • Модель скользящих нитей Хаксли и ее основные положения.
    Вода является средой с большим количеством водородных связей, именно они определяют особые свойства воды

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

Например, математические описания (модели ) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т.д. могут считаться одинаковыми с точки зрения их описания, хотя сами процессы различны.

Границы между моделями различного вида весьма условны. Можно говорить о различных режимах использования моделей - имитационном, стохастическом и т.д.

Как правило модель включает в себя: объект О, субъект (не обязательный) А, задачу Z, ресурсы B, среду моделирования С.

Модель можно представить формально в виде: М = < O, Z, A, B, C > .

Основные свойства любой модели :

    целенаправленность - модель всегда отображает некоторую систему, т.е. имеет цель;

    конечность - модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;

    упрощенность - модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;

    приблизительность - действительность отображается моделью грубо или приблизительно;

    адекватность - модель должна успешно описывать моделируемую систему;

    наглядность, обозримость основных ее свойств и отношений;

    доступность и технологичность для исследования или воспроизведения;

    информативность - модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели ) и должна давать возможность получить новую информацию;

    сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);

    полнота - в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования ;

    устойчивость - модель должна описывать и обеспечивать устойчивое поведение системы, если даже она вначале является неустойчивой;

    целостность - модель реализует некоторую систему, т.е. целое;

    замкнутость - модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений;

    адаптивность - модель может быть приспособлена к различным входным параметрам, воздействиям окружения;

    управляемость - модель должна иметь хотя бы один параметр, изменениями которого можно имитировать поведение моделируемой системы в различных условиях;

    возможность развития моделей (предыдущего уровня).

Жизненный цикл моделируемой системы:

    сбор информации об объекте, выдвижение гипотез, предварительный модельный анализ;

    проектирование структуры и состава моделей (подмоделей);

    построение спецификаций модели , разработка и отладка отдельных подмоделей, сборка модели в целом, идентификация (если это нужно) параметров моделей ;

    исследование модели - выбор метода исследования и разработка алгоритма (программы) моделирования ;

    исследование адекватности, устойчивости, чувствительности модели ;

    оценка средств моделирования (затраченных ресурсов);

    интерпретация, анализ результатов моделирования и установление некоторых причинно-следственных связей в исследуемой системе;

    генерация отчетов и проектных (народно-хозяйственных) решений;

    уточнение, модификация модели , если это необходимо, и возврат к исследуемой системе с новыми знаниями, полученными с помощью модели и моделирования .

Рассмотрим, как отражаются в записи (2.1) основные общие свойства системы.

Первое такое свойство – линейность или нелинейность. Оно обычно расшифровывается как линейная (нелинейная) зависимость от входов операторов S (линейность или нелинейность параметров состояния) или (линейность или нелинейность модели в целом). Линейность может являться как естественным, хорошо соответствующим природе, так и искусственным (вводимым для целей упрощения) свойством модели.

Второе общее свойство модели – непрерывность или дискретность. Оно выражается в структуре множеств (совокупностей), которым принадлежат параметры состояния, параметр процесса и выходы системы. Таким образом, дискретность множеств Y, Т, Х - ведет к модели, называемой дискретной, а их непрерывность – к модели с непрерывными свойствами. Дискретность входов (импульсы внешних сил, ступенчатость воздействий и др.) в общем случае не ведет к дискретности модели в целом. Важной характеристикой дискретной модели является конечность или бесконечность числа состояний системы и числа значений выходных характеристик. В первом случае модель называется дискретной конечной. Дискретность модели также может быть как естественным условием (система скачкообразно меняет свое состояние и выходные свойства), так и искусственно внесенной особенностью. Типичный пример последнего – замена непрерывной математической функции на набор ее значений в фиксированных точках.

Следующее свойство модели – детерминированность или стохастичность. Если в модели среди величин х + , а , у , х - имеются случайные, т. е. определяемые лишь некоторыми вероятностные характеристиками, то модель называется стохастической (вероятностной, случайной). В этом случае и все результаты, полученные при рассмотрении модели, имеют стохастический характер и должны быть соответственно интерпретированы. С точки зрения практики, граница между детерминированными и стохастическими моделями выглядит расплывчатой. Так, в технике о любом размере или массе можно сказать, что это не точное значение, а усредненная величина типа математического ожидания, в связи с чем и результаты вычислений будут представлять собой лишь математические ожидания исследуемых величин. Однако такой взгляд представляется крайним. Удобный практический прием состоит в том, что при малых отклонениях от фиксированных значений модель считается детерминированной, а отклонение результата исследуется методами оценок или анализа ее чувствительности.


При значительных же отклонениях применяется методика стохастического исследования.

Четвертое общее свойство модели – ее стационарность или нестационарность. Сначала поясним понятие стационарности некоторого правила (процесса). Пусть в

рассматриваемом правиле присутствует параметр процесса, которым для удобства понимания будем считать время. Возьмем все внешние условия применения данного правила одинаковыми, но в первом случае мы применяем правило в момент t 0 , а во втором – в момент t 0 +Q . Спрашивается, будет ли результат применения правила одинаковым? Ответ на этот вопрос и определяет стационарность: если результат одинаков, то правило (процесс) считается стационарным, а если различен – нестационарным. Если все правила в модели стационарны, то стационарной называется и сама модель. Чаще всего стационарность выражается в неизменности во времени некоторых физических величин: стационарным является поток жидкости с постоянной скоростью, стационарна механическая система, в которой силы зависят только от координат и не зависят от времени.

Для отражения стационарности в формальной записи рассмотрим расширенный вид правила S , в которое введена его зависимость от начальных условий процесса t 0 , y 0 и зависимость входов от параметра t :

y = S (x + (t ), a , t , t 0 , у 0).

Тогда для стационарного процесса имеет место равенство

S(x + (t+Q), а,t+Q, t 0 +Q, y 0) = S (x + (t), а, t, t 0 , y 0).

Аналогично можно определить стационарность правил V и .

Другим общим свойством модели является вид составляющих кортежа (2.1). Простейшим будет случай, когда входы, выходы и параметры а в системе – это числа, а правило – математическая функция. Широко распространена ситуация, когда входы и выходы есть функции параметра процесса. Правила S , V , тогда являются либо функциями, либо операторами и функционалами. Функциями, скажем, от параметров состояния могут быть и те параметры системы, которые мы ранее называли постоянными. Описанная выше ситуация еще достаточно удобна для исследования модели на ЭВМ.

Последним упомянем свойство модели (2.1), состоящее в конечности или бесконечности числа входов, выходов, параметров состояния, постоянных параметров системы. Теория рассматривает и тот, и другой тип модели, однако на практике работают лишь с моделями с конечномерностью всех перечисленных составляющих.