Основные составляющие мультимедийного представления информации.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Министерство образования Российской федерации

Университет систем управления и радиоэлектроники

Мультимедиа

и ее составляющие

Реферат по программированию

Составил

Проверил

    • 1. Что такое мультимедиа? 3
    • 2. Что такое CD-ROM? 3
      • 2.1. Немного истории. 4
      • 2.2. Параметры накопителей CD-ROM. 4
      • 2.3. Скорость передачи данных. 4
      • 2.4. Время доступа. 5
      • 2.5. Кэш-память. 6
    • 3. Видеоплаты. 6
      • 3.1. Монохромный адаптер MDA. 6
      • 3.2. Цветной графический адаптер CGA. 7
      • 3.3. Усовершенствованный графический редактор EGA. 7
      • 3.4. Адаптеры стандарта VGA. 7
      • 3.5. Стандарты XGA и XGA-2. 8
      • 3.6. Адаптеры SVGA. 8
    • 4. Звук. 8
      • 4.1. 8- и 16-разрядные звуковые платы. 8
      • 4.2. Колонки. 8
  • 5. Перспективы. 10
  • Таблицы. 11
  • Литература. 13

1. Что такое мультимедиа?

Понятие мультимедиа охватывает целый ряд компьютерных технологий, связанных с аудио, видео и способами их хранения. В самых общих чертах - это возможность объединить изображение, звук и данные. В основном, мультимедиа подразумевает добавление к компьютеру звуковой платы и накопителя CD-ROM.

Для принятия стандартов, касающихся мультимедиа-компьтеров, компанией Microsoft был создан Маркетинговый совет по компьютерам для мультимедиа (Multimedia PC Marketing Council). Этой организацией было создано несколько MPC-стандартов, эмблемы и торговые знаки, которые разрешалось использовать производителям, продукция которых соответствует требованиям данных стандартов. Это позволило создавать совместные аппаратные и программные продукты в области мультимедиа для IBM-совместимых систем.

Недавно Маркетинговый совет по компьютерам для мультимедиа (MPC Marketing Council) передал свои полномочия группе Software Publishers Association"s Multimedia PC Working Group. В нее вошло много организаций - членов совета, и теперь она является законодателем всех MPC-спецификаций. Первое, что сделала эта группа, - приняла новые MPC-стандарты.

Советом было разработано два первых мультимедиа-стандарта, называемых MPC Level 1 и MPC Level 2. В июне 1995 года, после создания группы Software Publishers Association (SPA), эти стандарты были дополнены третьим - MPC Level 3. Данный стандарт определяет минимальные требования к мультимедиа-компьютеру (см. Таблицу 1, страница 11).

Далее рассмотрим конкретнее отдельные составляющие (изображение, звук и данные) мультимедиа.

1. Что такое CD - ROM ?

CD-ROM - это оптический носитель информации, предназначенный только для чтения, на котором может храниться до 650 Мбайт данных, что соответствует примерно 333 000 страницам текста или 74 минутам высококачественного звучания, или их комбинации. CD-ROM очень похож на обычные звуковые компакт-диски, и его можно даже попытаться воспроизвести на обычном звуковом проигрывателе. Правда, при этом вы услышите только шум. Доступ к данным, хранящимся на CD-ROM, осуществляется быстрее, чем к данным, записанным на дискетах, но все же значительно медленнее, чем на современных жестких дисках. Термин CD - ROM относится как к самим компакт-дискам, так и к устройствам (накопителям), в которых информация считывается с компакт-диска.

Сфера применения CD-ROM расширяется очень быстро: если в 1988 году их было записано всего несколько десятков, то на сегодняшний день выпущено уже несколько тысяч наименований самых разнообразных тематических дисков - от статистических данных по мировому сельскохозяйственному производству до обучающих игр для дошкольников. Множество мелких и крупных частных фирм и государственных организаций выпускают свои собственные компакт-диски со сведениями, представляющими интерес для специалистов в определенных областях.

2.1. Немного истории.

В 1978 году фирмы Sony и Philips объединили свои усилия в области разработки современных звуковых компакт-дисков. Фирма Philips к тому времени уже разработала лазерный проигрыватель, а у Sony за плечами были многолетние исследования в области цифровой звукозаписи и производства.

Фирма Sony настаивала на том, чтобы диаметр компакт-дисков был равен 12, а Philips предлагала уменьшить его.

В 1982 году обе фирмы обнародовали стандарт, в котором определялись методы обработки сигналов, способы их записи, а также размер диска - 4,72, который используется и по сей день. Точные размеры компакт-диска таковы: внешний диаметр - 120 мм, диаметр центрального отверстия - 15 мм, толщина - 1,2 мм. Говорят, что такие размеры были выбраны потому, что на таком диске полностью помещалась Девятая симфония Бетховена. Сотрудничество этих двух фирм в 80-е годы привело к созданию дополнительных стандартов, касающихся использования технологий для записи компьютерных данных. На основе этих стандартов были созданы современные накопители для работы с компакт-дисками. И если на первом этапе инженеры трудились над тем, как подобрать размер диска под величайшую из симфоний, то сейчас программисты и издатели думают, как в этот маленький кружочек втиснуть побольше информации.

2.2. Параметры накопителей CD-ROM.

Приводимые в документации к накопителям CD-ROM параметры характеризуют в основном их производительность.

Основными характеристиками накопителей CD-ROM являются скорость передачи и время доступа к данным, наличие внутренних буферов и их емкость, а также тип используемого интерфейса.

2.3. Скорость передачи данных.

Скорость передачи данных определяет объем данных, который может считать накопитель с компакт-диска на компьютер за одну секунду. Основной единицей измерения этого параметра является количество переданных килобайтов данных в секунду (Кбайт/с). Очевидно, что эта характеристика отражает максимальную скорость считывания накопителя. Чем выше скорость считывания, тем лучше, однако необходимо помнить, что существуют и другие важные параметры.

В соответствии со стандартным форматом записи за каждую секунду должно считываться 75 блоков данных по 2 048 полезных байтов. Скорость передачи данных при этом должна быть равна 150 Кбайт/с. Это стандартная скорость передачи данных для устройств CD-DA, которые также называются односкоростными . Термин “односкоростной” означает, что запись на компакт-диски осуществляется в формате с постоянной линейной скоростью (CLV); при этом скорость вращения диска изменяется так, чтобы линейная скорость оставалась постоянной. Поскольку, в отличие от музыкальных компакт-дисков, данные с диска CD-ROM можно считывать с произвольной скоростью (главное, чтобы скорость была постоянной), ее вполне можно повысить. На сегодняшний день выпускаются накопители, в которых информация может считываться с разными скоростями, кратными скорости, которая принята для односкоростных накопителей (см. таблицу 2, страница 11).

2.4. Время доступа.

Время доступа к данным для накопителей CD-ROM определяется так же, как и для жестких дисков. Оно равняется задержке между получением команды и моментом считывания первого бита данных. Время доступа измеряется в миллисекундах и его стандартное паспортное значение для накопителей 24х приблизительно равно 95 мс. При этом имеется в виду среднее время доступа, поскольку реальное время доступа зависит от расположения данных на диске. Очевидно, что при работе на внутренних дорожках диска время доступа будет меньше, чем при считывании информации с внешних дорожек. Поэтому в паспортах на накопители приводится среднее время доступа, определяемое как среднее значение при выполнении нескольких случайных считываний данных с диска.

Чем меньше время доступа, тем лучше, особенно в тех случаях, когда данные нужно находить и считывать быстро. Время доступа к данным на CD-ROM постоянно сокращается. Заметим, что этот параметр для накопителей CD-ROM намного хуже, чем для жестких дисков (100 - 200 мс для CD-ROM и 8 мс для жестких дисков). Столь существенная разница объясняется принципиальными различиями в конструкциях: в жестких дисках используется несколько головок и диапазон их механического передвижения меньше. Накопители CD-ROM используют один лазерный луч, и он перемещается вдоль всего диска. К тому же данные на компакт-диске записаны вдоль спирали и после перемещения считывающей головки для чтения данной дорожки необходимо еще ждать, когда лазерный луч попадет на участок с необходимыми данными.

Приведенные в таблице 3 (страница 12) данные характерны для устройств высокого класса. В каждой категории накопителей (с одинаковой скоростью передачи данных) могут быть устройства с более высоким или более низким значением времени доступа.

2.5. Кэш-память.

Во многих накопителях CD-ROM имеются встроенные буферы, или кэш-память. Эти буферы представляют собой устанавливаемые на плате накопителя микросхемы памяти для записи считанных данных, что позволяет передавать в компьютер за одно обращение большие массивы данных. Обычно емкость буфера составляет 256 Кбайт, хотя выпускаются модели как с большими, так и с меньшими объемами (чем больше - тем лучше!). Как правило, в более быстродействующих устройствах емкость буферов больше. Это делается для более высоких скоростей передачи данных. Рекомендуемая емкость встроенного буфера - не менее 512 Кбайт, что является стандартным значением для большинства двадцатичетырехскоростных устройств.

2. Видеоплаты.

Видоплата формирует сигналы управления монитором. С появлением в 1987 году компьютеров семейства PS/2 фирма IBM ввела новые стандарты на видеосистемы, которые практически сразу же вытеснили старые. Большинство видеоадаптеров поддерживают, по крайней мере, один из следующих стандартов:

MDA(Monochrome Display Adapter);

CGA (Color Graphics Adapter);

EGA (Enhanced Graphics Adapter);

VGA (Video Graphics Array);

SVGA (Super VGA);

XGA (eXtended Graphics Array).

Все программы, предназначенные для IBM-совместимых компьютеров, рассчитаны на эти стандарты. Например, в пределах стандарта Super VGA (SVGA) разные производители предлагают разные форматы изображения, но формат 1024768 является стандартным для приложений, работающих с насыщенными изображениями.

3.1. Монохромный адаптер MDA.

Первым и простейшим видеоадаптером был монохромный адаптер, соответствующий спецификации MDA. На его плате, кроме собственно устройства управления дисплеем, размещалось еще и устройство управления принтером. Видеоадаптер MDA обеспечивал только отображение текста (символов) при разрешении по горизонтали 720 пикселей, по вертикали - 350 пикселей (720350). Это была система, ориентированная на вывод символов; она не могла выводить произвольные графические картинки.

3.2. Цветной графический адаптер CGA.

Многие годы цветной графический адаптер CGA был самым распространенным видеоадаптером, хотя сейчас его возможности очень далеки от совершенства. Этот адаптер имел две основные группы режимов работы - алфавитно-цифровые, или символьные (alphanumeric - A / N ), и графические с адресацией всех точек (all point addressable - ADA ). Символьных режимов два: 25 строк по 40 символов в каждой и 25 строк по 80 символов (оба оперируют шестнадцатью цветами). И в графических, и в символьных режимах для формирования символов используются матрицы размером 88 пикселей. Графических режимов также два: цветной со средним разрешением (320200 пикселей, 4 цвета в одной палитре из 16 возможных) и черно-белый с высоким разрешением (640200 пикселей).

Один из недостатков видеоадаптеров CGA - появление на экранах некоторых моделей мерцания и “снега”. Мерцание проявляется в том, что при перемещении текста по экрану (например, при добавлении строки) символы начинают “подмигивать”. Снег - это случайные вспыхивающие точки на экране.

3.3. Усовершенствованный графический редактор EGA.

Усовершенствованный графический редактор EGA, производство которого было прекращено с началом выпуска компьютеров PS/2, состоял из графической платы, платы расширения памяти изображения, набора модулей памяти изображения и цветного монитора с повышенным разрешением. Одно из преимуществ EGA состояло в возможности строить систему по модульному принципу. Поскольку графическая плата работала с любым из мониторов фирмы IBM, ее можно было использовать и с монохромными мониторами, и с цветными мониторами, имеющими обычное разрешение, ранних моделей, и с цветными мониторами, имеющими более высокое разрешение.

3.4. Адаптеры стандарта VGA.

В апреле 1987 года одновременно с выпуском компьютеров семейства PS/2 фирма IBM ввела в действие спецификацию VGA (видеографическая матрица), которая вскоре стала общепризнанным стандартом систем отображения ПК. Фактически в тот же день IBM обнародовала еще одну спецификацию для систем отображения с низким расширением MCGA и выпустила на рынок видеоадаптер высокого расширения IBM 8514. Адаптеры MCGA и 8514 не стали общепризнанными стандартами, как VGA, и вскоре “сошли со сцены”.

3.5. Стандарты XGA и XGA-2.

В конце октября 1990 года фирма IBM объявила о выпуске видеоадаптера XGA Display Adapter / A для системы PS/2, а в сентябре 1992 года - о выпуске XGA-2. Оба устройства - высококачественные 32-разрядные адаптеры с возможностью передачи им управления шиной (bus master ) предназначены для компьютеров с шиной MCA. Разработанные как новая разновидность VGA, они обеспечивают повышенное разрешение, большее количество цветов и значительно более высокую производительность.

3.6. Адаптеры SVGA.

С появлением видеоадаптеров XGA и 8514/А конкуренты IBM решили не копировать эти разрешения VGA, а начать выпуск более дешевых адаптеров с разрешением, которое выше разрешения продуктов IBM. Эти видеоадаптеры образовали категорию Super VGA , или SVGA .

Возможности SVGA шире возможностей плат VGA. Поначалу SVGA не являлся стандартом. Под этим термином подразумевались многие отличающиеся одна от другой разработки различных фирм, требования к параметрам которых были жестче, чем требования к VGA.

4. Звук.

4.1. 8- и 16-разрядные звуковые платы.

Первым стандартом MPC предусматривался “8-разрядный” звук. Это не означает, что звуковые платы должны были вставляться в 8-разрядный слот расширения. Разрядность звука характеризует количество битов, используемых для цифрового представления каждой выборки. При восьми разрядах количество дискретных уровней звукового сигнала составляет 256, а если использовать 16 бит, то их количество достигает 65 536 (при этом, естественно, качество звука значительно улучшается). 8-разрядное представление является достаточным для записи и воспроизведения речи , а вот для музыки требуется 16 разрядов.

4.2. Колонки.

Для успешных коммерческих презентаций, работы с мультимедиа и MIDI нужны высококачественные стереофонические колонки. Стандартные колонки слишком велики для рабочего стола.

Часто звуковые платы не обеспечивают достаточной для колонок мощности. Даже 4 Вт (как у большинства звуковых плат) бывает мало для того, чтобы ”раскачать” колонки высокого класса. Кроме того, обычные колонки создают магнитные поля и, будучи установленными рядом с монитором, могут искажать изображение на экране. Эти же поля могут испортить записанную на дискете информацию.

Чтобы разрешить эти проблемы, колонки для компьютерных систем должны быть небольшими и с высоким КПД. В них должна быть предусмотрена магнитная защита, например, в виде ферромагнитных экранов в корпусе или электрической компенсации магнитных полей.

На сегодняшний день выпускаются десятки моделей динамиков: от дешевых миниатюрных устройств фирм Sony, Koss и LabTech до больших агрегатов с автономным питанием, например фирм Bose и Altec Lansing. Для оценки качества динамика нужно иметь представление о его параметрах.

Частотная характеристика (frequency response ). Этот параметр представляет полосу частот, воспроизводимых динамиком. Наиболее логичным был бы диапазон от 20 Гц до 20 кГц - он соответствует частотам, которые воспринимает человеческое ухо, но ни один динамик не может идеально воспроизводить звуки всего этого диапазона. Очень немногие люди слышат звуки выше 18 кГц. Самый высококачественный динамик воспроизводит звуки в диапазоне частот от 30 Гц до 23 кГц, а у дешевых моделей звук ограничивается диапазоном от 100 Гц до 20 кГц. Частотная характеристика является самым субъективным параметром, так как одинаковые, с этой точки зрения, динамики могут звучать совершенно по-разному.

Нелинейные искажения (TDH - Total Harmonic Distortion). Этот параметр определяет уровень искажений и шумов, возникающих в процессе усиления сигнала. Попросту говоря, искажения представляют собой разность между подаваемым на динамик звуковым сигналом и слышимым звуком. Величина искажений измеряется в процентах, и допустимым считается уровень искажений, равный 0,1%. Для высококачественной аппаратуры стандартом считается уровень искажений 0,05%. У некоторых динамиков искажения достигают 10%, а у наушников - 2%.

Мощность. Этот параметр обычно выражается в ваттах на канал и обозначает выходную электрическую мощность, подводимую к колонкам. Во многих звуковых платах есть встроенные усилители с мощностью до 8 Вт на канал (обычно 4 Вт). Иногда этой мощности не достаточно для воспроизведения всех оттенков звука, поэтому во многих колонках устанавливаются встроенные усилители. Такие колонки можно переключать в режим усиления сигнала, поступающего со звуковой платы.

3. Перспективы.

Итак, в мире явно наблюдается бум мультимедиа. При таких темпах развития, когда возникают новые направления, а другие, казавшиеся весьма перспективными, вдруг становятся неконкурентноспособными, трудно составлять даже обзоры: их выводы могут стать неточными или вообще устареть через совсем небольшое время. Прогнозы же дальнейшего развития систем мультимедиа тем более ненадежное занятие. Мультимедиа значительно увеличивает количество и повышает качество информации, способной храниться в цифровой форме и передаваться в системе “человек - машина”.

Таблицы.

Таблица 1. Стандарты мультимедиа.

Процессор

75 МГц Pentium

Жесткий диск

Накопитель на гибких дисках

3,5-дюймовый на 1,44 Мбайт

3,5-дюймовый на 1,44 Мбайт

3,5-дюймовый на 1,44 Мбайт

Накопитель

Однократная скорость

Двойная скорость

Учетверенная скорость

Разрешение адаптера VGA

640480,

640480,

65536 цветов

640480,

65536 цветов

Порты

Ввода-вывода

Последовательный, параллельный, игровой, MIDI

Последовательный, параллельный, игровой, MIDI

Программное обеспечение

Microsoft Windows 3.1

Microsoft Windows 3.1

Microsoft Windows 3.1

Дата принятия

Таблица 2. Скорости передачи данных в накопителях CD-ROM

Тип накопителя

Скорость передачи данных, байт/с

Скорость передачи данных, Кбайт/с

Односкоростной (1х)

Двухскоростной (2х)

Трехскоростной (3х)

Четырехскоростной (4х)

Шестискоростной (6х)

Восьмискоростной (8х)

Десятискоростной (10х)

Двенадцатискоростной (12х)

Шестнадцатискоростной (16х)

Восемнадцатискоростной (18х)

Тридцатидвухскоростной (32х)

Стоскоростной (100х)

1 843 200 - 3 686 400

Таблица 3. Стандартное время доступа к данным в накопителях CD-ROM

Тип накопителя

Время доступа к данным, мс

Односкоростной (1х)

Двухскоростной (2х)

Трехскоростной (3х)

Четырехскоростной (4х)

Шестискоростной (6х)

Восьмискоростной (8х)

Десятискоростной (10х)

Двенадцатискоростной (12х)

Шестнадцатискоростной (16х)

Восемнадцатискоростной (18х)

Двадцатичетырехскоростной (24х)

Тридцатидвухскоростной (32х)

Стоскоростной (100х)

Литература.

Скотт Мюллер, Крег Зекер. Модернизация и ремонт ПК. - М.:Издательский дом “Вильямс”, 1999. - 990 стр.

С. Новосельцев. Мультимедиа - синтез трех стихий//Компьютер Пресс. - 1991, №8. - стр. 9-21.

Подобные документы

    Области применения мультимедиа. Основные носители и категории мультимедиа-продуктов. Звуковые карты, CD-ROM, видеокарты. Программные средства мультимедиа. Порядок разработки, функционирования и применения средств обработки информации разных типов.

    контрольная работа , добавлен 14.01.2015

    Специальная электронная плата, которая позволяет записывать звук, воспроизводить его и создавать программными средствами с помощью микрофона. Объем памяти видеоадаптеров. Основные характеристики сканеров. Оптическое разрешение и плотность, глубина цвета.

    реферат , добавлен 24.12.2013

    Основные узлы. Видеокарты стандарта MDA. Монохромный адаптер Hercules И другие видеоадаптеры: CGA, EGA, MCGA, VCA, XGА, SVGA и VESA Local Bus. Аппаратный ускоритель 2D. Тестирование видеоплат. технологические изменения в начинке и конструкции плат.

    реферат , добавлен 14.11.2008

    Различные виды определения термина "мультимедиа". Мультимедиа-технологии как одно из наиболее перспективных и популярных направлений информатики. Мультимедиа в сети Internet. Компьютерная графика и звуки. Различные области применения мультимедиа.

    курсовая работа , добавлен 19.04.2012

    Использование профессиональных графических примеров. Применение продуктов мультимедиа. Линейное и структурное представление информации. Мультимедиа ресурсы сети Интернет. Программное обеспечение мультимедиа-компьютера. Создание и обработка изображения.

    курсовая работа , добавлен 04.03.2013

    Потенциальные возможности компьютера. Широкое применение мультимедиа технологии. Понятие и виды мультимедиа. Интересные мультимедиа устройства. 3D очки, web-камеры, сканер, динамический диапазон, мультимедийная и виртуальная лазерная клавиатура.

    реферат , добавлен 08.04.2011

    Операционная система Microsoft с настраиваемым интерфейсом - Windows ХР. Работа стандартных прикладных программ: блокнот, графический редактор Paint, текстовой процессор WordPad, калькулятор, сжатие данных, агент сжатия, стандартные средства мультимедиа.

    контрольная работа , добавлен 25.01.2011

    Теоретические аспекты среды программирования Delphi. Сущность понятия жизненного цикла, характеристика спиральной модели. Назначение программы "Графический редактор", ее основные функции. Работа с графическим редактором, документирование программы.

    курсовая работа , добавлен 16.12.2011

    Характеристика графических возможностей среды программирования Lazarus. Анализ свойств Canvas, Pen, Brush. Сущность методов рисования эллипса и прямоугольника. Возможности компонентов Image и PaintBox. Реализации программы "Графический редактор".

    курсовая работа , добавлен 30.03.2015

    Характеристика видеокарты. Графический процессор - сердце видеокарты, характеризующее быстродействие адаптера и его функциональные возможности. Разработка инструкционно-технологической карты по ремонту видеоплат. Ремонт видеокарты в домашних условиях.

Нередко понятие «мультимедиа» (вообще, весьма противоречиво трактуемый термин) описывают как представление информации в виде комбинации текста, графики, видео, анимации и звука. Анализируя этот список, можно сказать, что первые четыре компонента (текст, графика, видео и анимация) - это различные варианты отображения информации графическими средствами, которые принадлежат к одной среде (а не ко «многим средам», или multimedia), а именно - к среде визуального восприятия.

Так что по большому счету говорить о мультимедиа можно только в том случае, когда к средствам воздействия на органы зрения добавляется аудиосоставляющая. Конечно, в настоящее время известны компьютерные системы, которые способны воздействовать также и на тактильное восприятие человека и даже создавать запахи, присущие тем или иным визуальным объектам, однако пока эти приложения либо имеют узкоспециализированное применение, либо находятся в зачаточной стадии. Поэтому можно утверждать, что сегодняшние мультимедиа-технологии - это технологии, которые нацелены на передачу информации, воздействуя в основном на два канала восприятия - зрение и слух.

Поскольку в описаниях мультимедийных технологий на страницах печати аудиосоставляющей несправедливо уделяется значительно меньшее внимание, чем технологиям передачи графических объектов, мы решили восполнить этот пробел и попросили рассказать о том, как создается аудиоряд для мультимедийного контента, одного из ведущих российских специалистов в области цифровой звукозаписи - Сергея Титова .

КомпьютерПресс: Итак, можно сказать, что понятия «мультимедиа» не существует без звуковой составляющей. Сергей, не могли бы вы рассказать, как создается именно эта часть мультимедийного контента?

Сергей Титов: В принципе, около 80% всей информации о внешнем мире мы воспринимаем с помощью зрения и менее 20% - с помощью слуха. Однако без этих 20% обойтись невозможно. Существует достаточно много мультимедийных приложений, где звук стоит на первом месте и именно он задает тон всему произведению. Например, чаще всего видеоклип делают под конкретную песню, а не пишут песню под видео. Поэтому в выражении «аудиовизуальный ряд» именно слово «аудио» стоит на первом месте.

Если говорить о звуковой составляющей мультимедиа, то здесь есть два аспекта: с точки зрения потребителя и с точки зрения создателя. По всей видимости, для компьютерного журнала интересен именно аспект создания мультимедиа-контента, поскольку он как раз и создается с помощью компьютерной техники.

Говоря о средствах создания аудиоконтента, следует отметить, что процесс производства требует принципиально более высокого разрешения при записи файлов, чем для стадии потребления, и соответственно необходима техника более высокого качества.

Тут можно провести аналогию с графикой: дизайнер может впоследствии представить картинку в низком разрешении, например для публикации в Интернете и при этом отбросить часть информации, но процесс разработки и редакции неминуемо ведется с учетом всей доступной информации, причем разложенной по слоям. То же самое происходит и при работе со звуком. Поэтому даже если мы говорим о любительской студии, то, как минимум, должны говорить о технике полупрофессионального уровня.

Говоря о разрешающей способности системы, мы на самом деле имеем в виду два параметра: точность измерения амплитуды сигнала и частоту квантования, или Sampling Rate. Иначе говоря, мы можем измерять амплитуду выходного сигнала очень точно, но делать это очень редко и в результате потерять большую часть информации.

КП: Как же происходит процесс создания звукоряда?

С.Т.: Любая звуковая картина создается из некоторых составляющих элементов. Как диджей на дискотеке оперирует неким набором исходных составляющих, из которых он выстраивает непрерывную программу, так и человек, занимающийся озвучиванием чего-либо, имеет некие исходные материалы, которые он редактирует и сводит в готовую картину. Если речь идет о музыке в чистом виде, то вначале стоит задача зафиксировать эти элементы, а потом собрать их в единую картину. Это, в общем, и называется сведением.

Если речь идет об озвучивании некоторого видеоряда (собственно, здесь и можно говорить о мультимедийном контенте), то вам необходимо собрать элементы, из которых состоит звуковое сопровождение, а затем уже «привязать» их к картинке, отредактировать эти элементы и привести во взаимное соответствие; при этом отдельные элементы, о которых идет речь, необходимо расположить в виде, удобном для работы.

Компьютерные программы создают интерфейс, где имеются те же дорожки и микшер с линеечкой. Под каждой из этих линеечек находится свой элемент, который подвергается тем или иным модификациям. Таким образом, мы создаем некоторое синтезированное звуковое поле, оперируя имеющимися элементами, а поскольку задача эта в принципе творческая, то мы должны иметь возможность модифицировать эти элементы с помощью тех или иных видов обработки - от простой редакции (порезать, отсортировать, поклеить) до сложной, когда отдельные элементы могут удлиняться или укорачиваться, когда можно поменять характер звучания каждого сигнала.

КП: Какое же программное обеспечение нужно, чтобы выполнить эту работу, и какое необходимо специальное компьютерное оборудование?

С.Т.: Специальное компьютерное оборудование - это, по сути дела, лишь плата ввода-вывода, хотя определенные требования, конечно, предъявляются и к другим системам рабочей станции. Программное обеспечение для организации процесса звукозаписи и монтажа существует в огромном количестве: от дешевых любительских до полупрофессиональных и высокопрофессиональных систем. Большинство из этих программ имеют plug-in-архитектуру, требуют высокой производительности от компьютера и достаточно мощных подсистем дисковой памяти. Дело в том, что для решения мультимедийных задач в целях производства, а не воспроизводства контента требуются машины с большим объемом RAM и мощным процессором. Наиболее значимым параметром здесь является не столько высокая мощность процессора, сколько хорошая сбалансированность машины с точки зрения работы дисковых подсистем. Последние, как правило, являются SCSI-устройствами, которые предпочтительны в том случае, когда приходится оперировать потоками данных, которые не должны прерываться. Поэтому IDE-интерфейсы практически не применяются. У IDE может быть очень высокая скорость пакетной передачи данных (burst transfer rate) и при этом низкая скорость потоковой передачи данных (sustain transfer rate).

При этом IDE-интерфейс предусматривает, что диск может отдавать данные, накапливая их в буфер, а потом уже выкачивать из буфера. SCSI устроен по-другому, и если даже скорость пакетной передачи невысока, то скорость потоковой передачи все равно будет высокой.

Необходимо также отметить, что для вышеупомянутых задач требуются весьма большие объемы дискового пространства. Я приведу простой пример - 24-разрядный монофайл даже при низких значениях sampling rate, например 44,1 кГц, занимает 7,5 Мбайт на трек в минуту.

КП: Нет ли какой-то технологии, чтобы хранить эти данные более компактно?

С.Т.: Это линейный PCM (Pulse Code Modulation), который никак не сожмешь. Он может потом ужаться в MP3, например, но не на этапе производства, а на этапе распространения. На этапе производства мы обязаны работать с линейными, некомпрессированными сигналами. Вновь приведу аналогию с Photoshop. Для того чтобы выстроить графическую композицию, дизайнер обязан иметь полное представление о том, что у него хранится в каждом слое, иметь доступ к каждому слою и корректировать его отдельно. Все это приводит к тому, что формат PSD Photoshop занимает приличный объем, но позволяет в любой момент вернуться и внести исправления в каждый слой, не затронув при этом все остальные. В тот момент, когда картинка полностью выстроена, ее можно представлять в другом формате, сжимать с потерями или без потерь, но, я повторяю, только тогда, когда этап производства полностью завершен. То же происходит и со звуком - свести звуковую композицию можно, только имея полную информацию обо всех составляющих сигнала.

Как я уже говорил, для создания звуковой картины нужна исходная библиотека, соответствующая той задаче, над которой вы работаете. Следовательно, видеопродюсеру в большей мере нужны предзаписанные разнообразные шумы и эффекты, а диджею - так называемые петли (повторяющиеся элементы, характерные для танцевальной музыки). Весь этот материал должен храниться в виде файлов, понятных для соответствующей программы, которая с ними работает. Далее необходима акустическая система, для того чтобы все это контролировать, а программа соответственно должна давать возможность манипулировать этим исходным материалом, в чем, собственно, и заключается креативная часть процесса. Пользуясь компьютерной системой как средством ввода-вывода и программой как инструментом, пользователь в соответствии со своим внутренним чутьем редактирует исходный материал: увеличивает или уменьшает громкость отдельных элементов, изменяет тембральную окраску. В результате процесса микширования звукорежиссер должен получить сбалансированную звуковую картину, которая бы имела определенную эстетическую ценность. Как вы видите, аналогия с графикой заметна даже на терминологическом уровне. И будет ли эта картина чего-то стоить, целиком зависит от опыта, вкуса, таланта этого звукорежиссера (конечно, при условии наличия качественной техники).

КП: До сих пор мы имели в виду чисто звуковую картину, однако, говоря о мультимедиа, необходимо рассмотреть, какие существуют средства, чтобы свести воедино звук и изображение. Что для этого нужно?

С.Т.: Разумеется, нужна плата ввода-вывода видео, например имеющая выходной формат MPEG или Quick time (если говорить о мультимедиа, то Quick time будет удобнее).

КП: Я полагаю, было бы интересно рассмотреть ряд практических задач по озвучиванию видеоряда и на конкретных примерах выяснить, какое оборудование и какое программное обеспечение требуется для задач различного уровня сложности. Начать можно было бы с анализа вариантов создания недорого презентационного фильма…

Например, давайте рассмотрим такой случай: имеется видеофильм, снятый любительской камерой, и на микрофон этой камеры уже записаны реплики и диалоги. Теперь нам нужно на основе этого сделать привлекательный презентационный фильм с полупрофессиональным озвучиванием. Что для этого понадобится?

С.Т.: Если перед нами стоит задача добиться определенного восприятия звукового материала (будь то даже любительский фильм), к исходному материалу нужно добавить многое: необходимы звуковые эффекты, фоновая музыка, так называемые бэкграундные шумы (от англ. background - фон, задний план) и прочее. Поэтому в любом случае возникает необходимость иметь одновременно звучащими несколько дорожек, то есть читать одновременно несколько файлов. При этом у нас должна быть возможность регулировать в процессе производства характер тембра этих файлов и редактировать их (удлинять, укорачивать и т.п.).

Важно отметить, что система должна обеспечивать возможность эксперимента, так чтобы пользователь мог посмотреть, подходит ли данный эффект по звучанию к данному месту. Система также должна позволять точно совмещать звуковые эффекты со звуковым контекстом, регулировать панораму (если речь идет о стереозвуке) и так далее…

КП: Ну что же, задача ясна, и требования к оборудованию понятны… Теперь хотелось бы получить представление о том, какое конкретно оборудование и какое программное обеспечение можно порекомендовать для решения подобной задачи и в какую примерно сумму это обойдется пользователю.

С.Т.: В принципе, нам нужен какой-то видеоредактор, но это, как я понимаю, отдельная тема, а сегодня мы должны сконцентрироваться именно на звуковой составляющей. В любом случае в той задаче, которую вы описали выше, звуковой ряд подчинен видеоряду. Поэтому будем считать, что видеоряд у нас имеется, и не станем анализировать, каким образом он отредактирован. Рассматриваем исходный вариант, когда есть чистовой видеоряд и черновой аудиоряд. В этом черновом аудиоряде нужно какие-то реплики вычеркивать, какие-то заменять новыми и так далее. Неважно, идет ли речь о презентационном фильме или об игровом любительском, - нам будет необходимо вставлять в него некоторые искусственные аудиоэффекты. Это связано с тем, что звук от многих событий в кадре, записанный с помощью микрофона видеокамеры, будет звучать, как говорится, неубедительно.

КП: А где же еще взять эти звуки, как не с реально снятых событий?

С.Т.: Это - целое направление, называемое sound design, которое заключается в создании таких звуков, которые, будучи воспроизведены, давали бы убедительную звуковую картину с учетом особенностей восприятия звуков зрителем. Кроме того, есть так называемое драматургическое подчеркивание в картине тех или иных звуков, которые на самом деле звучат по-другому. Конечно, если мы говорим о любительском кино и о полупрофессиональном озвучивании, то некоторые возможности оказываются урезанными, но задачи перед нами и в этом случае стоят те же, что и перед профессионалами.

В любом случае, помимо редакции черновика, необходимо добавлять какие-то спецэффекты.

КП: Итак, какое же оборудование нам нужно для решения этой задачи?

С.Т.: Еще раз подчеркиваю, что мы говорим о полупрофессиональном уровне, то есть о производстве любительского фильма в домашних условиях или производстве фильмов для студий кабельного телевидения, что, в общем, близкие задачи. Для того чтобы решить большинство задач такого постпродакшна, нужна машина Pentium III - 500 МГц, желательно 256 RAM, дисковая подсистема SCSI; видеоподсистема особой роли не играет, но желательно, чтобы там были установлены какие-то аппаратные декодеры компрессированного видео; соответственно нужна плата ввода-вывода, для самых простейших любительских работ это может быть SoundBlaster. Как сравнительно дешевый комплекс можно рассмотреть программный продукт Nuendo, который будет работать практически с любой платой и, например, дешевый SoundBlaster за 150 долларов. Конечно, здесь сразу нужно сказать, что такая система будет иметь весьма ограниченные возможности вследствие низкого качества платы SoundBlaster, которая имеет очень невысокого качества микрофонные усилители и весьма плохого качества АЦП/ЦАП.

КП: Хотелось бы услышать, что же позволяет делать Nuendo?

С.Т.: Nuendo - это программный комплекс, который имеет plug-in-архитектуру и предназначен для решения задач аудиопроизводства, причем ориентирован именно на задачи создания «аудио для видео», то есть, можно сказать, предназначен как раз для решения мультимедийных задач. Программа работает со звуком и с изображением одновременно, при этом изображение для нее является вторичной составляющей. Nuendo работает и под Windows NT, и под Windows 98, и под BE OS. Стоит эта программа 887 долл.

Программа предоставляет возможность просмотра видеоизображения, разложенного во времени, и многодорожечную систему для редактирования и сведения звуковой картины.

Особенностью программного комплекса является его гибкость, и работать можно на широком спектре недорогого железа. Распространено мнение, что серьезные системы работают только на оборудовании со специализированными DSP-сопроцессорами. Программное обеспечение Nuendo доказывает обратное, поскольку не только предоставляет инструменты для профессионального аудиопродакшна, но и не требует для своих нужд специализированного железа и специальных сопроцессоров.

Nuendo предоставляет 200 дорожек для микширования , поддерживает surround-звук таким образом, что многие системы по сравнению с Nuendo выглядят весьма бледно.

Nuendo предоставляет качественный процессинг в режиме реального времени на том же процессоре, на котором работает сама рабочая станция. Конечно, скорость процессинга будет зависеть от выбранной рабочей станции, но достоинство программы именно в том, что она адаптируется к разным мощностям процессора. Еще несколько лет назад серьезный аудиопроцессинг был немыслим без DSP. Но сегодня настольные компьютеры обладают достаточно мощными собственными процессорами для решения задач процессинга в режиме реального времени. Очевидно, что возможность использовать обычный компьютер для решения специфических задач, обходясь без DSP-сопроцессоров, добавляет системе гибкость.

Nuendo - это объектно-ориентированная система (то есть система, которая оперирует объектами-метафорами: пульт, индикатор, дорожка и т.д.), которая позволяет легко и в полной мере осуществлять редактирование аудиофайлов в проектах различной сложности, предоставляя очень удобный и продуманный интерфейс. Средства drag-and-drop доступны при решении различных задач и особенно интенсивно используются при обработке кроссфейдов.

Важной особенностью программы является практически неограниченная система Undo & Redo функций редактирования. Nuendo предоставляет не просто операции Undo & Redo: каждый из аудиосегментов имеет свою собственную историю редактирования, причем система организована таким образом, что после нескольких сотен изменений Undo & Redo максимальный объем файла, требуемый для хранения сегмента, никогда не увеличивается более чем вдвое по сравнению с первоначальным объемом.

Одной из самых сильных сторон программы является возможность поддержки surround-звука . Система имеет не только совершенный инструмент для редактирования положения источника звука, но и поддерживает многоканальные surround-эффекты.

КП: К чему сводятся действия пользователя этой программы в процессе озвучивания?

С.Т.: Мы прослушиваем тот саундтрек, который у нас уже есть, и смотрим, какую информацию нам нужно удалить, а какую - отредактировать.

КП: Если мы говорим о любительском фильме, то сколько дорожек нам может понадобиться?

С.Т.: По моему опыту, это 16-24 дорожки.

КП: Что же можно разместить на таком огромном количестве дорожек?

С.Т.: Считайте сами: одну дорожку занимают черновики, вторую - спецэффекты, третью - закадровая музыка, причем это не только музыка, но и диалоги, комментарии и прочее. Когда все это собирается вместе, то получается как раз такое количество дорожек.

К тому же 16 или даже 24 дорожки - это относительно небольшое число. В профессиональных фильмах их количество может перевалить далеко за сотню.

КП: Какие еще варианты вы могли бы порекомендовать для полупрофессионального применения, скажем, для того же озвучивания презентационного фильма в домашних условиях?

С.Т.: Доступный по цене вариант, который я бы предложил рассмотреть, - это комбинация платы DIGI-001 и программы Pro Tools 5 LE. Данный вариант существенно лучше по качеству платы ввода-вывода и несколько беднее по софту.

В настоящее время существует версия под Mac OS и буквально на днях выходит версия под Windows NT (надеюсь, что к моменту выпуска этого журнала Windows-версия данной программы появится и в России). Аппаратная часть для Windows и для Mac OS абсолютно одинакова.

КП: Можно ли сказать, что после появления версии под Windows это будет более дешевым решением в силу того, что сама рабочая станция будет стоить дешевле?

С.Т.: Заблуждение, что PC-станция для озвучивания стоит дешевле, чем решение на базе Macintosh, весьма распространено. Но и мнение о том, что есть дешевые станции на базе PC и дорогие на базе Macintosh, неверно. Есть конкретные системы для решения конкретных задач, и дело в том, что подчас построить систему на базе PC для решения вопросов, связанных с созданием мультимедийного контента, весьма непросто, поскольку из случайного набора дешевых IBM-совместимых частей очень трудно собрать машину, которая бы давала оптимальную производительность…

Вне зависимости от типа рабочей станции, которая будет работать в системе, DIGI 001 будет предоставлять гораздо более широкие возможности, чем SoundBlaster, а стоит плата вместе с «математикой» Pro Tools 5.0 LE всего 995 долл., то есть в сумме примерно столько же, сколько и предыдущее решение с самым дешевым SoundBlaster’oм.

При этом если решение Nuendo плюс SoundBlaster - это вариант, в котором возможности ограничены дешевой платой, а софт имеет весьма широкие возможности, то решение на базе DIGI 001 плюс Pro Tools 5.0 LE - это гораздо более мощная плата, а софт - несколько более скромный по своим возможностям, чем Nuendo. Чтобы было понятно, о чем идет речь, перечислим преимущества данного решения с точки зрения платы ввода-вывода. DIGI 001 - это 24-разрядный АЦП-ЦАП, возможность одновременно прослушивать 24 дорожки, наличие на плате восьми вместо двух входов и т.д. Так что если, например, по ходу записи презентации нужно записывать сцену, в которой участвуют шесть человек, говорящих в шесть микрофонов, то DIGI 001 с такой задачей вполне справится. Прибавьте к этому независимый выход на мониторы плюс работу с 24-разрядными файлами, в то время как с Nuendo и дешевым SaundBlaster’ом вы сможете работать только с 16-разрядными файлами…

Pro Tools 5 LE позволяет делать практически то же, что и Nuendo, - осуществлять нелинейный монтаж, такие же манипуляции с аудиофайлами, плюс к этому имеется мини-секвенсор, который позволяет еще и музыку записывать, используя MIDI-инструменты.

КП: Так чем же отличаются профессиональные задачи от полупрофессиональных и какое для них требуется оборудование?

С.Т.: Прежде всего я мог бы рассказать о системе Pro Tools. Для того чтобы предупредить возможные вопросы, хочу еще раз подчеркнуть: необходимо различать Digidesign Pro Tools как торговую марку и Pro Tools как оборудование. Под торговой маркой Pro Tools скрывается целый спектр продуктов. Самая простая система из этого набора как раз и есть DIGI 001, о которой мы говорили при описании полупрофессиональных задач. Это самый простой вариант из целой линейки продуктов, которая заканчивается системами, работающими на базе десятков рабочих станций, завязанных в единую сеть.

КП: Давайте выберем такой вариант, который может быть применен для озвучивания несложных профессиональных фильмов, сериалов и так далее.

С.Т.: Следующая система, которую мы могли бы рассмотреть, - это Pro Tools 24 . Чтобы было понятно, какие задачи решает данная система, отметим, что последний сериал «Зена» был озвучен именно с помощью этой техники.

Имеются версии как для Mac OS, так и для Windows NT. Если говорить о требованиях к NT-станциям, то это должна быть серьезная машина, например IBM Intelli Station M PRO, 512 RAM. В документации утверждается, что минимальные требования к процессору - Pentium II 233, однако реально для работы нужно не меньше Pentium II 450 и, естественно, дисковая система SCSI, причем необходим двухпортовый акселератор, чтобы тянуть 64 дорожки одновременно.

Pro Tools 24 представляет собой набор специализированных плат сигнальных процессоров на базе Motorola. Важно отметить, что эта система базируется на сопроцессорах, то есть процессор машины выполняет работу, связанную с вводом-выводом и отображением графики на экране, а весь процессинг сигнала выполняется на специализированных сопроцессорах DSP (Digital Signal Processing). Это позволяет решать достаточно сложные задачи сведения. Именно такая технология применяется для озвучивания так называемых блокбастеров. Так, например, для озвучивания «Титаника» (только эффекты!) использовалась система из 18 рабочих станций, объединенных в сеть.

Звуковое сопровождение в фильмах, подобных «Титанику», - это потрясающе сложная, изменяющаяся во времени звуковая картина. Если проанализировать насыщенный звуками пяти-десятиминутный отрывок из подобного фильма и выписать все звуки, которые там использованы, получится список из сотни наименований. Конечно, все эти звуки не слышны с кассеты уровня VHS, и многие даже не подозревают, насколько сложная звуковая картина создается в фильме. (Причем большинство из этих звуков созданы синтетически и в природе не существуют.)

КП: Вы затронули вопрос о замене естественных звуков на более убедительные. Где можно приобрести такие библиотеки звуков и сколько они стоят?

С.Т.: Стоимость таких библиотек - от пятидесяти долларов и выше, вплоть до нескольких тысяч долларов. При этом все эти звуки в основном применяются именно для несложного продакшна на уровне кабельных сетей. Для профессиональных же фильмов, даже малобюджетных (не говоря уже о дорогих), все звуки записываются самостоятельно.

КП: А чем не подходят звуки из стандартной библиотеки для профессионального фильма?

С.Т.: В принципе, я говорю о том, как это делается на Западе или как это должно делаться, поскольку у нас по бедности очень часто экономят на том, на чем нельзя экономить. Дело в том, что художественный фильм отражает некий индивидуальный замысел режиссера, и найти в библиотеках звук, полностью соответствующий этому замыслу, часто практически невозможно.

КП: Но ведь звук можно редактировать, причем возможности для этого, как вы говорите, весьма широкие?

С.Т.: Есть такое понятие, как тембр звука. Можно подчеркнуть или ослабить некие составляющие этого тембра, но радикально изменить его нельзя. Именно поэтому все шумы для профессионального фильма записываются «с нуля», и занимаются этим профессионалы. Приведу такой пример: в известном фильме «Бэтмен возвращается» присутствовал звук машины Бэтмена. Скажите, пожалуйста, в какой библиотеке можно найти этот звук? Более того, если мы говорим о стереозвуке и о технологии Surround, то каждая звуковая картина просто уникальна. Например, если вертолет летит на зрителя и улетает назад, очевидно, что подобная звуковая картина привязана к сюжету. При этом необязательно записывать реальные звуки - чаще всего они создаются синтетически.

КП: Почему же нельзя записать звуки с реальных физических процессов и представить их именно такими, какими они встречаются в жизни? Почему вместо них нужно использовать какие-то другие, синтетические?

С.Т.: Нам совсем не нужно в точности воссоздавать звук реальных физических, как вы выразились, процессов. Если в трех метрах от переднего плана взрывается бомба, то зрителю нужно передать вовсе не тот звук, который в реальности слышит солдат, оказавшийся рядом с местом взрыва! Мы должны передать некую условную картину, которая позволит зрителю представить реальность; при этом мы ориентируемся на особенности его восприятия, на необходимые нам художественные акценты и так далее.

Мультимедиа представляет собой совокупность аппаратных и программных средств, обеспечивающих создание звуковых и визуальных эффектов, а также влияние человека на ход выполнения программы, предусматривающей их создание.

Первоначально компьютеры умели "работать" только с числами. Немного позднее они "научились" работать с текстами и графикой. И лишь в последнем десятилетии XX века компьютер "освоил" звук и движущееся изображение. Новые возможности компьютера получили название мультимедиа (multimedia - множественная среда, то есть среда, состоящая из нескольких компонентов различной природы).

Ярким примером применения мультимедийных возможностей являются различные энциклопедии, в которых вывод текста той или иной статьи сопровождается показом связанных с текстом изображений, фрагментов кинофильмов, синхронным озвучиванием выводимого текста и т.д. Мультимедиа широко применяется в обучающих, познавательных, игровых программах. Эксперименты, проводившиеся над большими группами обучаемых, показали, что в памяти остается 25% услышанного материала. Если материал воспринимается зрительно, то запоминается 1/3 увиденного. В случае комбинированного воздействия на зрение и слух доля усвоенного материала повышается до 50%. А если обучение организовано при диалоговом, интерактивном (interaction - взаимодействие) общении обучаемого и мультимедийных обучающих программ, усваивается до 75% материала. Эти наблюдения свидетельствуют об огромных перспективах применения мультимедийных технологий в области обучения и во многих других аналогичных областях применения.

Одной из разновидностей мультимедиа считается так называемое кибернетическое пространство .

Развитием гипертекстовых и мультимедийных систем являются

Компоненты мультимедиа

Что такое мультимедиа? Multi – много, Media – среда. Это человеко-машинный интерфейс, в котором используются различные, естественные для человека каналы коммуникации: текст, графика, анимация (видео), аудиоинформация. А также более специализированные виртуальные каналы, обращающиеся, к различным органам чувств. Рассмотрим подробнее основные составляющие мультимедиа.

1. Текст . Представляет собой знаковую или вербальную информацию. Символами текста могут быть буквы, математические, логические и другие знаки. Текст может быть не только литературным, текстом являются компьютерная программа, нотная запись и пр. В любом случае это последовательность символов, написанная на каком-то языке.

Слова текста не имеют никакого видимого сходства с тем, что они обозначают. То есть они адресованы к абстрактному мышлению, а в голове мы их перекодируем в те или иные предметы и явления.

При этом текст всегда обладает точностью и конкретностью, он надежен как средство коммуникации. Без текста информация перестает быть конкретной, однозначной. Такимобразом, текст является абстрактным по форме, но конкретным по содержанию.

На текстовой информации основаны научная статья, рекламное объявление, газета или журнал, Web-страница глобальной сети Интернет, интерфейс компьютерной программы и многое другое. Убрав текст из любого из указанных информационных продуктов, мы этот продукт фактически уничтожим. Даже в рекламном объявлении, не говоря уже о проспектах, периодике, книгах главное – текст. Главная цель подавляющего числа печатных материалов – это донести до человека определенную информацию в виде текста.

Текст может быть не только визуальным. Речь – это тоже текст, понятия, закодированные в виде звуков. И этот текст намного древнее, чем письменный. Человек научился говорить раньше, чем писать.

2. Визуальная или графическая информация. Эта вся остальная поступающая через зрение, статичная и не закодированная в текст информация. Как средство коммуникации изображение более многозначно и неопределенно, оно не обладает конкретностью текста. Но обладает другими достоинствами.

а) Богатство информации. При активном просмотре адресат одновременно воспринимает множество значений, смыслов, нюансов. Например, на фотографии много могут сказать выражения лиц людей, из позы, окружающий фон и т.д. И каждый может воспринять одно и то же изображение по-разному.

б) Простота восприятия. На просмотр иллюстрации затрачивается намного меньше усилий, чем на чтение текста. Нужный эмоциональный эффект может быть достигнут намного легче.

Графику можно разделить на два вида: фотографию и рисунок. Фотографически точное отображение реального мира придает материалу достоверность и реалистичность и в этом его ценность. Рисунок – это уже преломление реальности в человеческом сознании в виде символов: кривых, фигур, их окраски, композиции и прочего. Функции у рисунка могут быть две:

а) наглядное уточнение и дополнение информации: в виде чертежа, схемы или в виде иллюстрации в книге – цель одинакова;

б) создание определенного стиля, эстетического облика публикации.

3. Анимация или видео , то есть движение.Компьютерная анимация чаще всего используется для решения двух задач.

а) Привлечение внимания. Любой движущийся объект сразу же привлекает внимание зрителя. Это инстинктивное свойство, т.к. движущийся объект может быть опасен. Поэтому анимация важна как фактор привлечения внимания к самому главному.

При этом достаточно бывает простых средств привлечения внимания. Так, для баннеров в Интернете обычно используют элементарные, циклически повторяемые движения. Сложная анимация даже противопоказана, поскольку Веб-сайты часто и так бывают перегружены графикой. А это раздражает и утомляет посетителя.

б) Создание различных информационных материалов: роликов, презентаций и пр. Здесь монотонность не годится. Необходимо управлять вниманием зрителя. А для этого требуются такие вещи, как сценарий, сюжет, драматургия, пусть даже и в упрощенной форме. У развития действия во времени существуют свои стадии и свои законы (о чем будет сказано далее).

4. Звук. Звуковая информация обращена к другому органу чувств – не к зрению, а к слуху. Естественно, что там имеется своя специфика, свой дизайн и технические особенности. Хотя в восприятии информации можно заметить много сходного. Аналогом письма служит речь, изобразительное искусство до некоторой степени можно сопоставить с музыкой, используются также природные, необработанные звуки.

Существенная разница состоит в том, что статического звука не существует. Звук – это всегда динамичные колебания среды, обладающие определенными частотой, амплитудой, тембровыми характеристиками.

Человеческое ухо обладает высокой чувствительностью к гармоническому спектру звуковых колебаний, к диссонансу обертонов. Поэтому получение высококачественного оцифрованного компьютерного звука до сих пор является технически сложной задачей. И многие специалисты считают аналоговый звук более «живым», естественным по сравнению с цифровым звуком.

5. Виртуальные каналы , которые обращаются к другим органам чувств.

Так, виброзвонок в мобильном телефоне обращается не к зрению и слуху, а к осязанию. И это не экзотика, а распространённый канал информации. О том, что кто-то хочет поговорить с абонентом. Тактильные (осязательные) ощущения применяются и для других целей: имеются различные тренажёры, специальные перчатки для компьютерных игр и для хирургов и пр.

В появившихся в последнее время 4D кинотеатрах эффекта присутствия зрителя в фильме добиваются разными, не применяемыми раньше средствами: подвижные кресла, брызги в лицо, порывы ветра, запахи.

Есть даже каналы связи и управления, в которых задействованы непосредственно нервные клетки, мозг человека. Они разрабатываются для инвалидов, людей с ограниченными возможностями. Человек после тренировки способен силой мысли управлять движением точек на экране. А также (что важнее) мысленно отдавать команды, приводящие в движение специальную инвалидную коляску.

Таким образом, виртуальная реальность из фантастики постепенно превращается в часть повседневной жизни.

План ответа

Мультимедиа - совокупность визуальных и аудиоэффектов, воспроизводимых с помощью компьютера и управляемых интерактивным программным обеспечением.

Основные составляющие мультимедиа это:


  1. Текст – набор символов, представляющий визуально информацию, которую необходимо донести до пользователя.

  2. Аудио: звук– это механические колебания среды: воздуха, воды и т.д, воспринимаемые слуховым аппаратом человека. Звуковые эффекты- сохранение в цифровом виде звучания музыкальных инструментов, звуков природы или музыкальных фрагментов, созданных на компьютере, либо записанных и оцифрованых.

  3. Виртуальная реальность - это высокоразвитая форма компьютерного моделирования, которая позволяет пользователю погрузиться в модельный мир и непосредственно действовать в нём.
Зрительные, слуховые, осязательные и моторные ощущения пользователя при этом заменяются их имитацией, генерируемой компьютером.

  1. Изображения

  2. Анимация- воспроизведение последовательности картинок, создающее впечатление движущегося изображения.

  3. Видео(от лат. video - смотрю, вижу) - под этим термином понимают широкий спектр технологий записи, обработки, передачи, хранения и воспроизведения визуального и аудиовизуального материала на мониторах.
Особенностью, отличающей мультимедиа-технологии от других компьютерных технологий, является обработка аудио- и видеоинформации в режиме реального времени.
Вопрос 2.

Особенности растровой графики.

План ответа

Растровое изображение состоит из мельчайших точек (пикселов) – цветных квадратиков одинакового размера. Растровое изображение подобно мозаике – когда приближаете (увеличиваете) его, то видите отдельные пиксели, а если удаляете (уменьшаете), пиксели сливаются.

Растровое изображение может иметь различное разрешение, которое определяется количеством точек по горизонтали и вертикали.

Растр - (от англ. raster) – представление изображения в виде двумерного массива точек (пикселов), упорядоченных в ряды и столбцы

Форматы растровой графики

Программы для работы с растровой графикой: Paint, Adobe PhotoShop,

Picture Publisher, Painter ,Fauve Matisse.

Применение растровой графики:

Ретуширование, реставрирование фотографий;

Создание и обработка фотомонтажа;

Оцифровка фотоматериалов при помощи сканирования (изображения получаются в растровом виде).

Вопрос 3.

Особенности векторной графики.

План ответа

Векторная графика- использование геометрических примитивов для представления изображений в компьютерной графике. Векторный рисунок представляет собой совокупность примитивов, с каждым элементом векторного рисунка можно работать отдельно.

Векторные графические редакторы позволяют вращать, перемещать, отражать, растягивать, скашивать, выполнять различные преобразования объектов, комбинировать примитивы в более сложные объекты.Более сложные преобразования включают операции на замкнутых фигурах: объединение, дополнение, пересечение и т. д.Векторная графика идеальна для простых или составных рисунков, которые не нуждаются в фотореализме.

Преимущества векторной графики:

Минимальное количество информации передаётся намного меньшему размеру файла (размер не зависит от величины объекта);

Можно бесконечно увеличить, например, дугу окружности, и она останется гладкой;

При увеличении или уменьшении объектов толщина линий может быть постоянной;

Параметры объектов хранятся и могут быть изменены. Это означает, что перемещение, масштабирование, вращение, заполнение и т. д. не ухудшат качества рисунка.

Недостатки векторной графики:

Не каждый объект может быть легко изображен в векторном виде;

Количество памяти и времени на отображение зависит от числа объектов и их сложности.

Перевод векторной графики в растр достаточно прост, но обратного пути нет.

Программы для работы с векторной графикой: Corel Draw, Adobe Illustrator,

AutoCAD AutoDesk, Hewlett-Packard, Macromedia, Visio

Применение векторной графики.

Для создания вывесок, этикеток, логотипов, эмблем и пр. символьных изображений;

Для построения чертежей, диаграмм, графиков, схем;

Для рисованных изображений с четкими контурами, не обладающих большим спектром оттенков цветов.

Вопрос 4.

Дайте краткую характеристику графических форматов: bmp., gif., jpg., png.

План ответа

BMP (Windows Device Independent Bitmap). Формат ВМР является родным форматом Windows, он поддерживается всеми графическими редакторами, работающими под ее управлением. Применяется для хранения растровых изображений, предназначенных для использования в Windows и, по сути, больше ни на что не пригоден. Способен хранить как индексированный (до 256 цветов), так и RGB–цвет.

GIF (Graphics Interchange Format ). Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расширение имени файла.GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном. Ограниченные возможности по количеству цветов обусловливают его применение исключительно в электронных публикациях.

JPG (Joint Photographic Group ). Формат предназначен для хранения растровых изображений (расширение имени файла.JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении «избыточной» информации, поэтому формат рекомендуют использовать только для электронных публикаций.

Самое большое отличие формата JPEG от других форматов состоит в том, что в JPG используется алгоритм сжатия с потерями информации. Алгоритм сжатия без потерь так сохраняет информацию об изображении, что распакованное изображение в точности соответствует оригиналу. При сжатии с потерями приносится в жертву часть информации об изображении, чтобы достичь большего коэффициента сжатия. Распакованное изображение JPG редко соответствует оригиналу абсолютно точно, но очень часто эти различия столь незначительны, что их едва можно обнаружить.

PNG (Portable Network Graphics ). Сравнительно новый (1995 год) формат хранения изображений для их публикации в Интернете (расширение имени файла.PNG). Поддерживаются три типа изображений – цветные с глубиной 8 или 24 бита и черно–белое с градацией 256 оттенков серого. Сжатие информации происходит практически без потерь, предусмотрены 254 уровня альфа–канала, чересстрочная развертка.
Вопрос 5.

Что такое звук? Его основные параметры.

План ответа

Звук – это механические колебания среды: воздуха, воды и т.д, воспринимаемые слуховым аппаратом человека. То, что мы слышим – это результат обработки колебательных движений барабанной перепонки уха, представленный в виде сигналов нервной системы. Вне среды переноса звуковых волн звук не существует. Однако звуковые колебания можно перевести на другой носитель: изменить представление информации, не теряя ее фактически. Обычно звуковые колебания переносят на сигналы радиоволн.

Основные параметры

Высота (Pitch) – это атрибут слухового ощущения в терминах, в которых звуки можно расположить по шкале от низких к высоким. Высота зависит главным образом от частоты звукового стимула, но она также зависит от звукового давления и от

формы волны.

Величина звукового давления, которая едва заметна на слух при отсутствии всяких других мешающих шумов и звуков, называется пороговой величиной звукового давления, или, сокращенно, порогом слышимости.

Минимальная различимая на слух разность интенсивности двух звуков одной и той же частоты определяет так называемый дифференциальный порог слышимости по интенсивности звука.

Громкостью называется субъективное ощущение, позволяющее слуховой системе располагать звуки по шкале от тихих до громких звуков. Громкость звука связана, прежде всего, со звуковым давлением.

Бинауральным слухом называется его способность определять направление прихода звуковой волны, т. е. локализовать положение источника звука в пространстве. Эта способность достигается благодаря пространственной несовмещенности двух ушей в сочетании с экранирующим влиянием головы. Это приводит к тому, что всегда имеет место неидентичность возбуждения правого и левого уха. Этот факт обеспечивает человеку возможность воспринимать пространственный звуковой мир и оценивать перемещение источников звука в пространстве.


Вопрос 6.

Оцифровка звука.

План ответа

Звук может храниться на цифровых носителях, т.е. быть представленным в виде набора цифр. Любая цифровая техника или программа работают со звуком, представленным в цифровом виде. Преобразование аналогового звукового сигнала в цифровой включает в себя несколько этапов. Сначала аналоговый звуковой сигнал подается на аналоговый фильтр, который ограничивает полосу частот сигнала и устраняет помехи и шумы. Затем из аналогового сигнала с помощью схемы выборки/хранения выделяются отсчеты: с определенной периодичностью

осуществляется запоминание мгновенного уровня аналогового сигнала.

Далее отсчеты поступают в аналого-цифровой преобразователь (АЦП), который преобразует мгновенное значение каждого отсчета в цифровой код или числа. Полученная последовательность бит цифрового кода является звуковым сигналом в цифровой форме. В результате преобразования непрерывный аналоговый звуковой сигнал превращается в цифровой – дискретный как по времени, так и по величине. Таким образом, для переноса звука на цифровой носитель, необходимо осуществить его аналогово-цифровое преобразование. Такое преобразование состоит из трех этапов:

дискретизация – представление непрерывного сигнала в виде последовательного набора отдельных амплитуд;

квантование – разделение каждой амплитуды на заданное число уровней;

кодирование – запись данных позиции и уровня амплитуды в цифровом виде.

На практике преобразования звуковой информации из непрерывной формы в дискретную выполняются электронными устройствами, называемыми аналого-цифровыми преобразователями (АЦП) и цифро-аналоговыми преобразователями (ЦАП).


Вопрос 7.

Что такое Wave-формат, МР3-формат, MIDI-формат?

План ответа

Звук в компьютере хранится в файлах, имеющих различные способы представления информации. Перечислим основные форматы хранения звуковой информации.

WAVE (*.wav) – наиболее широко распространенный звуковой формат. Используется операционной системой Windows для хранения звуковых файлов. В его основе лежит формат RIFF (Resource Interchange File Format), позволяющий сохранять данные в структурированном виде.

Стандарт MPEG-1 представляет собой, целый комплект аудио и видео стандартов. Согласно стандартам ISO (International Standards Organization), аудио часть MPEG-1 включает в себя три алгоритма различных уровней сложности: Layer 1 (уровень 1), Layer 2 (уровень 2) и Layer 3 (уровень 3). Общая структура процесса кодирования одинакова для всех уровней MPEG-1 . Вместе с тем, несмотря на схожесть уровней в общем подходе к кодированию, уровни различаются по целевому использованию и задействованным в кодировании внутренним механизмам. Для каждого уровня определен свой формат записи выходного потока данных и, соответственно, свой алгоритм декодирования.

MPEG Layer 3 (*.мр3) - формат звуковых файлов с потерями качества, разработанный для сохранения звуков, отличных от человеческой речи. Используется для оцифровки музыкальных записей.

Windows Media Audio (*.wma) - формат звуковых файлов, предложенный фирмой Мiсrosоft. Кодек Windows Media Audio 8 обеспечивает качество, аналогичное mрЗ, при размерах файлов втрое меньших.

MIDI (*.mid) - цифровой интерфейс музыкальных инструментов (Musical Instгument Digital Interface). MIDI определяет обмен данными между музыкальными и звуковыми синтезаторами разных производителей. Интерфейс MIDI представляет собой протокол передачи музыкальных нот и мелодий. Но данные MIDI не являются цифровым звуком: это сокращенная форма записи музыки в числовой форме.
Вопрос 8.

Основные функции и характеристики звуковых карт.

План ответа

Звуковая карта - дополнительное оборудование персонального компьютера, позволяющее обрабатывать звук (выводить на акустические системы и/или записывать).

Звуковая карта явилась одним из наиболее поздних усовершенствований персонального компьютера. В современных материнских платах звуковые карты интегрированы, то есть выполнены прямо на самой материнской плате. Звуковая карта имеет несколько входов и выходов (всегда - аналоговых, и иногда - цифровых) для подключения устройств ввода-вывода звуковой информации - колонок, наушников, микрофонов и тому подобного. В случае с интегрированными звуковыми картами, эти вводы и выводы находятся непосредственно на материнской плате.

Она подключается к одному из слотов материнской платы в виде дочерней карты и выполняет вычислительные операции, связанные с обработкой звука, речи, музыки. Звук воспроизводится через внешние звуковые колонки , подключаемые к выходу звуковой карты. Специальный разъем позволяет отправить звуковой сигнал на внешний усилитель. Имеется также разъем для подключения микрофона , что позволяет записывать речь или музыку и сохранять их на жестком диске для последующей обработки и использования.

Основным параметром звуковой карты является разрядность, определяющая количество битов, используемых при преобразовании сигналов из аналоговой в цифровую форму и наоборот. Чем выше разрядность, тем меньше погрешность, связанная с оцифровкой, тем выше качество звучания. Минимальным требованием сегодняшнего дня являются 16 разрядов, а наибольшее распространение имеют 32-разрядные и 64-разрядные устройства.


Вопрос 9.

Наиболее распространенные форматы видеозиписи и области их использования.

План ответа

Audio Video Interleaved (*.AVI) - формат, разработанный Мiсrоsоft для записи и воспроизведения видео в операционной системе Windows. При записи в этом формате используются несколько различных алгоритмов сжатия (компрессии) видеоизображения. Среди них Cinepak, Indeo video, Motion-JPEG (M-JPEG) и др. Но только M-JPEG был признан среди них как международный стандарт для сжатия видео. Первоначально для захвата и воспроизведения видео использовались возможности программного комплекта Video fоr Windows, разработанного Microsoft. Компания Мicrоsоft разработала два формата, призванных заменить формат АVI: Advanced Streaming Format (*. ASF) и Advanced Authoring Format (*. AAF).

Windows Media Video (*.WМV) - новый формат видео от Microsoft, который приходит на смену формату АVI. В его основе Wiцdоws Video Codec, разработанный на базе стандарта MPEG-4.

Quick Time Моvе (*.MOV) - наиболее распространенный формат для записи и воспроизведения видео, разработанный фирмой Аррlе для компьютеров Macintosh в рамках технологии Quick Time. Включает поддержку не только видео, но и звука, текста, потоков MPEG, расширенного набора команд MIDI, векторной графики, панорам и объектов (QT) и трехмерных моделей. Поддерживает несколько различных форматов сжатия видео, в том числе MPEG, а также свой собственный метод компрессии.

MPEG (*.MPG, *.MPEG) - формат для записи и воспроизведения видео, разработанный группой экспертов по движущимся изображениям (MPEG). Имеет собственный алгоритм компрессии. В настоящее время активно используются для записи цифрового видео. Наиболее широкое распространение нашли два формата: MPEG-I и MPEG-2. Они различаются по объему и качеству получаемой видеоинформации и признаны международными стандартами для сжатия видео. В настоящее время наряду с MPEG-l и MPEG-2 используется новый формат MPEG-4. Он позволяет сжать информацию с большим коэффициентом сжатия.

Digital Video (*.DV) - формат, разработанный для цифровых видеокамер и видеомагнитофонов. Кодер-декодер (кодек) определен ведущими мировыми производителями электроники, чтобы его могли поддерживать производители в своих платах с интерфейсом FireWare и комплексных решениях для редактирования цифрового видео. Формат не является компактным, поэтому необходимо его преобразование в MPEG.
Вопрос 10.

Основные цветовые модели, их характеристики.

План ответа

В цифровых технологиях используются, как минимум четыре, основных модели: RGB, CMYK, HSB в различных вариантах и Lab.

Цветовая модель RGB

Данная цветовая модель базируется на трех основных цветах: Red – красном, Green – зеленом и Blue – синем. Данная цветовая модель считается аддитивной , то есть при увеличении яркости отдельных составляющих будет увеличиваться и яркость результирующего цвета : если смешать все три цвета с максимальной интенсивностью, то результатом будет белый цвет; напротив, при отсутствии всех цветов получается черный.

Модель является аппаратно–зависимой, так как значения базовых цветов (а также точка белого) определяются качеством примененного в мониторе люминофора. В результате на разных мониторах одно и то же изображение выглядит неодинаково. Несомненными достоинствами данного режима является то, что он позволяет работать со всеми 16 миллионами цветов, а недостаток состоит в том, что при выводе изображения на печать часть из этих цветов теряется, в основном самые яркие и насыщенные, также возникает проблема с синими цветами.

Модель RGB – это аддитивная цветовая модель, которая используется в устройствах, работающих со световыми потоками: сканеры, мониторы.

Цветовая модель HSB

Здесь заглавные буквы не соответствуют никаким цветам, а символизируют тон (цвет) , насыщенность и яркость (Hue Saturation Brightness). Все цвета располагаются по кругу, и каждому соответствует свой градус, то есть всего насчитывается 360. Эта модель аппаратно–зависимая и не соответствует восприятию человеческого глаза, так как глаз воспринимает спектральные цвета как цвета с разной яркостью (синий кажется более темным, чем красный), а в модели HSB им всем приписывается яркость 100%.

Насыщенность (Saturation) – это параметр цвета, определяющий его чистоту. Уменьшение насыщенности цвета означает его разбеливание.

Яркость (Brightness) – это параметр цвета, определяющий освещенность или затемненность цвета. Уменьшение яркости цвета означает его зачернение. Модель HSB – это пользовательская цветовая модель, которая позволяет выбирать цвет традиционным способом.

Цветовая модель CMYK

Является субтрактивной моделью.

Основные цвета в субтрактивной модели отличаются от цветов аддитивной. Cyan – голубой, Magenta – пурпурный, Yellow – желтый. Эти цвета являются полиграфической триадой и могут быть легко воспроизведены полиграфическими машинами. При смешение двух субтрактивных цветов результат затемняется (в модели RGB было наоборот). При нулевом значении всех компонент образуется белый цвет (белая бумага). Эта модель представляет отраженный цвет, и ее называют моделью субтрактивных основных цветов. Данная модель является основной для полиграфии и также является аппаратно–зависимой.

Цветовая модель Lab

Построение цветов базируется на слиянии трех каналов. Название она получила от своих базовых компонентов L, a и b. Компонент L несет информацию о яркостях изображения, а компоненты а и b – о его цветах (т. е. a и b – хроматические компоненты). Компонент а изменяется от зеленого до красного, а b – от синего до желтого. Яркость в этой модели отделена от цвета, что удобно для регулирования контраста, резкости и т.д. Однако, будучи абстрактной и сильно математизированной эта модель остается пока что неудобной для практической работы.


Вопрос 11.

Охарактеризуйте наиболее популярные настольные издательские системы.

План ответа

Издательская система (настольная издательская система, компьютерная издательская система) - комплекс, состоящий из персональных компьютеров, сканирующих, выводных и фотовыводных устройств, программного и сетевого обеспечения, используемый для набора и редактирования текста, создания и обработки изображений, верстки и изготовления оригинал-макетов, корректурных листов, фотоформ, цветопроб, печатных форм и пр., т. Е. Для подготовки издания к печати на уровне допечатных процессов.

Примерами таких НИС являются: Corel Ventura, Page Maker, QuarkXPress и др.

Достоинства:

Adobe PageMaker - сравнительно низкая ресурсоёмкость, наличие собственного языка написания скриптов, возможность размещения файлов изображений способом drag-n-drop для “накидывания” их на кадр плёнки, наличие собственного встроенного средства рефрешинга внутреннего индекса публикации, наличие встроенного средства спуска полос, возможность печатать в файл постранично, наличие дополнительно средства вставки даты в публикацию.

QuarkXPress - наличие большого количества удобных стандартизированных неизменяемых шорткатов, возможность подстроить параметры вёрстки в соответствии с традициями русской типографики, наличие большого количества подключаемых модулей, существенно расширяющих возможности программы, “открытая” архитектура построения модулей на основе SDK, наличие default path preferences и настраиваемого backup-фолдера. Промышленный стандарт де-факто.

Corel Ventura Publisher- наличие встроенного формульного и табличного редактора, возможность создания документов в соответствии с идеологией SGML (?). Прекрасная работа с индексированием документа, создание сносок, сложноорганизованного оглавления.

Недостатки:

Adobe PageMaker - отсутствие поддержки со стороны производителя, “непрозрачная” возможность написания аддонов, малое количество шорткатов, сравнительно меньшее распространение на Макинтошах, проблемы с выводом цветных иллюстраций, возможность потери вёрстки при нарушении целостности внутреннего индекса публикации, отсутствие возможности делать ссылки средствами программы, а не руками, проблемы с русским языком в модуле Расстановка Колонтитулов, неудовлетворительная по большей части работа модуля спуска полос.

QuarkXPress - сравнительно высокая ресурсоёмкость, недодуманная система “шорткатизации” на наиболее часто используемые действия (i.e. Size Box to Picture), невозможность печатать в файл постранично. Если в меню Get Picture явно набрать имя файла без расширения, то почему-то Кварк считает, что файл записан в формате BMP; 4 Кварк не понимает обтравку 6 фотошлёпа.

Corel Ventura Publisher - монстроидальность, отвратительный формульный редактор, несообразный с русскими правилами набора математики, “падучесть”, перегруженный интерфейс, наличие не всегда интуитивно-понятных настроек.
Вопрос 12.

Программное обеспечение для создания Web-сайтов?

План ответа

Программа Macromedia Dreamweaver изначально разработана программой Macromedia, но после 2007 года Dreamweaver стал выпускать Adobe. Является одним из самых популярных html-редакторов во всем мире.

Плюсы: поддерживает язык DHTML, можно создавать каскадные таблицы, легко и просто прописывать стили и скрипты таблиц. Позволяет производить удаленное обновление страниц сайта. У Macromedia Dreamweaver мощный графический редактор, с помощью которого у создателей web-сайта (программистов, верстальщиков и дизайнеров) есть возможность работать в одной среде. Не утяжеляет код, понятный интерфейс, легко интегрируется с Flash. Благодаря включенным в программу шаблонам, упрощается и убыстряется работа верстальщика.

Минусы: графический редактор настолько мощный, что может создавать web-страницы абсолютно любой сложности, особо не вникая в код. Кроме того, Macromedia Dreamweaver является не очень дешевым продуктом.
Microsoft FrontPage входит в состав пакета приложений Microsoft Office. В 2007 версии Microsoft Office Microsoft FrontPage заменена на Microsoft Expression Web, а в 2010 – на Microsoft Office SharePoint Designer.

Плюсы: программа без проблем вносит изменения в исходный код в режиме реального времени, а также доступна широкому кругу пользователей. Microsoft FrontPage имеет редактор сценариев и загружаемую панель инструментов, что позволяет детально управлять кодом и проводить тестирование web-страниц.

Минусы: использует движок Internet Explorer, из-за чего в других браузерах web-страницы могут потерять вид, изначально разработанный дизайнерами. С помощью программы Microsoft FrontPage не всегда просто управлять кодом.

При этом, программа Microsoft FrontPage очень многофункциональна. Она подходит как новичкам, так и опытным пользователям. Новичкам Microsoft FrontPage дает возможность быстро и без напрягов создавать страницы web-сайта.


Вопрос 13.

Этапы планирования сайта.

План ответа


  1. Определение цели создания сайта

  2. Выбор темы сайта

  3. Определение содержания сайта

  4. Построение структуры сайта

  5. Разработка дизайна сайта

  6. Регистрация и размещение сайта в Интернете
Четкое определение цели сайта.

Именно от цели создания сайта зависит всё остальное – тема, содержание, дизайн.

Выбирать тему необходимо на основе имеющихся у вас знаний в различных областях, т.к. сайт придётся пополнять. Наилучшим вариантом будет какой-нибудь познавательный ресурс, пусть даже очень маленький. Первый сайт и не должен быть большим.

После того, как набор текста будет завершен, нужно определиться, что, и на какой странице будет находиться. Определите и структуру ссылок на сайте. Необходимо продумать иерархию статей, какая статья будет главной, в каком порядке вы предложите пользователям читать их – составить логическую структуру сайта.


Ссылка с каждой страницы на главную, на предыдущую, следующую -будут соблюдены при разработке дизайна, которую можно начинать сразу после составления логической структуры.

Разработка дизайна –важный этап.

От дизайна будет зависеть читабельность текста, удобство навигации, внешний вид, привлекательность, возможность акцентировать внимание посетителя на чём-либо конкретном.
После того, как завершена разработка дизайна, остаётся лишь вставить текст на соответствующие страницы.

После того, как сайт появится в on-лайне необходимо проверить работоспособность всех его ссылок, а, следовательно, и наличие всех страниц.


Вопрос 14.

Оборудование для обработки видео на компьютере.

План ответа

Для записи видеоинформации необходимо:

специальная плата или устройство для оцифровки видеоизображения;

видеомагнитофон или видеокамера;

программное обеспечение для записи и редактирования цифрового видео.

звуковая карта (если плата видеозахвата не поддерживает возможности захвата звука).

Видеокарта (видеоадаптер). Совместно с монитором видеокарта образует видеоподсистему персонального компьютера. Физически видеоадаптер выполнен в виде отдельной дочерней платы, которая вставляется в один из слотов материнской платы и называется видеокартой. Видеоадаптер взял на себя функции видеоконтроллера, видеопроцессора и видеопамяти.

За время существования персональных компьютеров сменилось несколько стандартов видеоадаптеров: MDA (монохромный); CGA (4 цвета); EGA (16 цветов); VGA (256 цветов). В настоящее время применяются видеоадаптеры SVGA , обеспечивающие по выбору воспроизведение до 16,7 миллионов цветов с возможностью произвольного выбора разрешения экрана из стандартного ряда значений.

Плата оцифровки видео

Можно воспользоваться простейшей аналоговой картой видеозахвата или ТV-тюнером. При этом существуют следующие особенности такой платы. Она должна:

Показывать и захватывать аналоговое видео со скоростью потока данных, ограничиваемым только устройством записи;

Захватывать видео с произвольными размерами кадра, в частности, с разрешением 352×288 (необходимое для стандарта МРЕG-1);

Захватывать видео как через композитный вход, так и через S- Video.

Вопрос 15.

Дайте характеристику трехмерной и фрактальной график.

План ответа

Трёхмерная графика (3D, 3 Dimensions, русск. 3 измерения ) - раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объёмных объектов . Трёхмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трёхмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ. При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырёхмерного фрактала).Для получения трёхмерного изображения на плоскости требуются следующие шаги:

-моделирование - создание трёхмерной математической модели сцены и объектов в ней.

- рендеринг (визуализация) - построение проекции в соответствии с выбранной физической моделью.

-вывод полученного изображения на устройство вывода - монитор или принтер.

Фрактальная графика является на сегодняшний день одним из самых быстро развивающихся перспективных видов компьютерной графики .

Математической основой фрактальной графики является фрактальная геометрия . В основу метода построения изображений положен принцип наследования от так называемых «родителей» геометрических свойств объектов-наследников.

Фракталом

Объект называют самоподобным , когда увеличенные части объекта походят на сам объект и друг на друга. В простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале

Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому.

Объект называют самоподобным , когда увеличенные части объекта походят на сам объект и друг на друга. В простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале. Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому.

Объект называют самоподобным , когда увеличенные части объекта походят на сам объект и друг на друга. В простейшем случае небольшая часть фрактала содержит информацию обо всем фрактале. Изменяя и комбинируя окраску фрактальных фигур можно моделировать образы живой и неживой природы (например, ветви дерева или снежинки), а также, составлять из полученных фигур «фрактальную композицию» приемов монтажа фонограмм – выделение фрагментов, удаление, вставка.